欧米汽车资讯网

您现在的位置是: 首页 > 汽车动态

文章内容

_3ds ram

tamoadmin 2024-08-21
1.先进封装市场恐生变2.一镜双光圈带来更多摄影弹性, Galaxy S9 Plus 动手玩3.推进半导体技术发展的五大趋势4.3DS破解是什么意思?烧录卡是什

1.先进封装市场恐生变

2.一镜双光圈带来更多摄影弹性, Galaxy S9 Plus 动手玩

3.推进半导体技术发展的五大趋势

4.3DS破解是什么意思?烧录卡是什么?

5.对CPU的认识

6.5800x3d是am4还是am5

7.全球最重要三大电脑展之一:COMPUTEX 看点汇总

8.CPU都是用什么材料做成的?

_3ds ram

计算机英文术语完全介绍

1、CPU

3DNow!(3D no waiting)

ALU(Arithmetic Logic Unit,算术逻辑单元)

U(Address Generation Units,地址产成单元)

BGA(Ball Grid Array,球状矩阵排列)

BHT(branch prediction table,分支预测表)

BPU(Branch Processing Unit,分支处理单元)

Brach Pediction(分支预测)

CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)

CISC(Complex Instruction Set Computing,复杂指令集计算机)

CLK(Clock Cycle,时钟周期)

COB(Cache on board,板上集成缓存)

COD(Cache on Die,芯片内集成缓存)

CPGA(Ceramic Pin Grid Array,陶瓷针型栅格数组)

CPU(Center Processing Unit,中央处理器)

Data Forwarding(数据前送)

Decode(指令译码)

DIB(Dual Independent Bus,双独立总线)

EC(Embedded Controller,嵌入式控制器)

Embedded Chips(嵌入式处理器)

EPIC(explicitly parallel instruction code,并行指令代码)

FADD(Floationg Point Addition,浮点加)

FCPGA(Flip Chip Pin Grid Array,反转芯片针脚栅格数组)

FDIV(Floationg Point Divide,浮点除)

FEMMS(Fast Entry/Exit Multimedia State,快速进入/退出多媒体状态)

FFT(fast Fourier transform,快速热奥姆转换)

FID(FID:Frequency identify,频率鉴别号码)

FIFO(First Input First Output,先入先出队列)

flip-chip(芯片反转)

FLOP(Floating Point Operations Per Second,浮点操作/秒)

FMUL(Floationg Point Multiplication,浮点乘)

FPU(Float Point Unit,浮点运算单元)

FSUB(Floationg Point Suraction,浮点减)

HL-PBGA(表面黏着,高耐热、轻薄型塑料球状矩阵封装)

IA(Intel Architecture,英特尔架构)

ICU(Instruction Control Unit,指令控制单元)

ID(identify,鉴别号码)

IDF(Intel Developer Forum,英特尔开发者论坛)

IEU(Integer Execution Units,整数执行单元)

IMM(Intel Mobile Module,英特尔移动模块)

Instructions Cache(指令缓存)

Instruction Coloring(指令分类)

IPC(Instructions Per Clock Cycle,指令/时钟周期)

ISA(instruction set architecture,指令集架构)

KNI(Katmai New Instructions,Katmai新指令集,即SSE)

Latency(潜伏期)

LDT(Lightning Data Transport,闪电数据传输总线)

Local Interconnect(局域互连)

MESI(Modified,Exclusive,Shared,Invalid:修改、排除、共享、废弃)

MMX(MultiMedia Extensions,多媒体扩展指令集)

MMU(Multimedia Unit,多媒体单元)

MFLOPS(Million Floationg Point/Second,每秒百万个浮点操作)

MHz(Million Hertz,兆赫兹)

MP(Multi-Processing,多重处理器架构)

MPS(MultiProcessor Specification,多重处理器规范)

MSRs(Model-Specific Registers,特别模块寄存器)

NAOC(no-account OverClock,无效超频)

NI(Non-Intel,非英特尔)

OLGA(Organic Land Grid Array,基板栅格数组)

OoO(Out of Order,乱序执行)

PGA(Pin-Grid Array,引脚网格数组,耗电大)

PR(Performance Rate,性能比率)

PSN(Processor Serial numbers,处理器序列号)

PIB(Processor In a Box,盒装处理器)

PPGA(Plastic Pin Grid Array,塑料针状矩阵封装)

PQFP(Plastic Quad Flat Package,塑料方块平面封装)

RAW(Read after Write,写后读)

Register Contention(抢占寄存器)

Register Pressure(寄存器不足)

Register Renaming(寄存器重命名)

Remark(芯片频率重标识)

Resource contention(冲突)

Retirement(指令引退)

RISC(Reduced Instruction Set Computing,精简指令集计算机)

SEC(Single Edge Connector,单边连接器)

Shallow-trench isolation(浅槽隔离)

SIMD(Single Instruction Multiple Data,单指令多数据流)

SiO2F(Fluorided Silicon Oxide,二氧氟化硅)

SMI(System Management Interrupt,系统管理中断)

SMM(System Management Mode,系统管理模式)

SMP(Symmetric Multi-Processing,对称式多重处理架构)

SOI(Silicon-on-insulator,绝缘体硅片)

SONC(System on a chip,系统集成芯片)

SPEC(System Performance Evaluation Corporation,系统性能评估测试)

SQRT(Square Root Calculations,平方根计算)

SSE(Streaming SIMD Extensions,单一指令多数据流扩展)

Superscalar(超标量体系结构)

TCP(Tape Carrier Package,薄膜封装,发热小)

Throughput(吞吐量)

TLB(Translate Look side Buffers,翻译旁视缓冲器)

USWC(Uncacheabled Speculative Write Combination,无缓冲随机联合写操作)

VALU(Vector Arithmetic Logic Unit,向量算术逻辑单元)

VLIW(Very Long Instruction Word,超长指令字)

VPU(Vector Permutate Unit,向量排列单元)

VPU(vector processing units,向量处理单元,即处理MMX、SSE等SIMD指令的地方)

2、主板

ADIMM(advanced Dual In-line Memory Modules,高级双重内嵌式内存模块)

AMR(Audio/Modem Riser;音效/调制解调器主机板附加直立插卡)

AHA(Accelerated Hub Architecture,加速中心架构)

ASK IR(Amplitude Shift Keyed Infra-Red,长波形可移动输入红外线)

ATX(AT Extend,扩展型AT)

BIOS(Basic Input/Output System,基本输入/输出系统)

CSE(Configuration Space Enable,可分配空间)

DB(Device Bay,设备插架)

DMI(Desktop Management Interface,桌面管理接口)

EB(Expansion Bus,扩展总线)

EISA(Enhanced Industry Standard Architecture,增强形工业标准架构)

EMI(Electromagnetic Interference,电磁干扰)

ESCD(Extended System Configuration Data,可扩展系统配置数据)

FBC(Frame Buffer Cache,帧缓冲缓存)

FireWire(火线,即IEEE1394标准)

FSB(Front Side Bus,前置总线,即外部总线)

FWH( Firmware Hub,固件中心)

GMCH(Graphics & Memory Controller Hub,图形和内存控制中心)

GPIs(General Purpose Inputs,普通操作输入)

ICH(Input/Output Controller Hub,输入/输出控制中心)

IR(infrared ray,红外线)

IrDA(infrared ray,红外线通信接口可进行局域网存取和档共享)

ISA(Industry Standard Architecture,工业标准架构)

ISA(instruction set architecture,工业设置架构)

MDC(Mobile Daughter Card,移动式子卡)

MRH-R(Memory Repeater Hub,内存数据处理中心)

MRH-S(SDRAM Repeater Hub,SDRAM数据处理中心)

MTH(Memory Transfer Hub,内存转换中心)

NGIO(Next Generation Input/Output,新一代输入/输出标准)

P64H(64-bit PCI Controller Hub,64位PCI控制中心)

PCB(printed circuit board,印刷电路板)

PCBA(Printed Circuit Board Assembly,印刷电路板装配)

PCI(Peripheral Component Interconnect,互连设备)

PCI SIG(Peripheral Component Interconnect Special Interest Group,互连设备专业组)

POST(Power On Self Test,加电自测试)

RNG(Random number Generator,随机数字发生器)

RTC(Real Time Clock,实时时钟)

KBC(KeyBroad Control,键盘控制器)

SBA(Side Band Addressing,边带寻址)

SMA(Share Memory Architecture,共享内存结构)

STD(Suspend To Disk,磁盘唤醒)

STR(Suspend To RAM,内存唤醒)

SVR(Switching Voltage Regulator,交换式电压调节)

USB(Universal Serial Bus,通用串行总线)

USDM(Unified System Diagnostic Manager,统一系统监测管理器)

VID(Voltage Identification Definition,电压识别认证)

VRM (Voltage Regulator Module,电压调整模块)

ZIF(Zero Insertion Force,零插力)

主板技术

技嘉

ACOPS: Automatic CPU OverHeat Prevention System(CPU过热预防系统)

SIV: System Information Viewer(系统信息观察)

盘英

ESDJ(Easy Setting Dual Jumper,简化CPU双重跳线法)

浩鑫

UPT(USB、PANEL、LINK、TV-OUT四重界面)

芯片组

ACPI(Advanced Configuration and Power Interface,先进设置和电源管理)

P(Accelerated Graphics Port,图形加速接口)

I/O(Input/Output,输入/输出)

MIOC(Memory and I/O Bridge Controller,内存和I/O桥控制器)

NBC(North Bridge Chip,北桥芯片)

PIIX(PCI ISA/IDE Accelerator,加速器)

PSE36(Page Size Extension 36-bit,36位页面尺寸扩展模式)

PXB(PCI Expander Bridge,PCI增强桥)

RCG(RAS/CAS Generator,RAS/CAS发生器)

SBC(South Bridge Chip,南桥芯片)

SMB(System Management Bus,全系统管理总线)

SPD(Serial Presence Detect,内存内部序号检测装置)

SSB(Super South Bridge,超级南桥芯片)

TDP(Triton Data Path,数据路径)

TSC(Triton System Controller,系统控制器)

QPA(Quad Port Acceleration,四界面加速)

3、显示设备

ASIC(Application Specific Integrated Circuit,特殊应用集成电路)

ASC(Auto-Sizing and Centering,自动调效屏幕尺寸和中心位置)

BLA(Bearn Landing Area,电子束落区)

CRC(Cyclical Redundancy Check,循环冗余检查)

CRT(Cathode Ray Tube,阴极射线管)

DDC(Display Data Channel,显示数据信道)

DFL(Dynamic Focus Lens,动态聚焦)

DFS(Digital Flex Scan,数字伸缩扫描)

DIC(Digital Image Control,数字图像控制)

Digital Multiscan II(数字式智能多频追踪)

DLP(digital Light Processing,数字光处理)

DOSD(Digital On Screen Display,同屏数字化显示)

DPMS(Display Power Management Signalling,显示能源管理信号)

DQL(Dynamic Quadrapole Lens,动态四极镜)

DSP(Digital Signal Processing,数字信号处理)

EFEAL(Extended Field Elliptical Aperture Lens,可扩展扫描椭圆孔镜头)

FRC(Frame Rate Control,帧比率控制)

LCD(liquid crystal display,液晶显示屏)

LCOS(Liquid Crystal On Silicon,硅上液晶)

LED(light emitting diode,光学二级管)

L-SIC(Low Power-Small Aperture G1 wiht Impregnated Cathode,低电压光圈阴极管)

LVDS(Low Voltage Differential Signal,低电压差动信号)

MALS(Multi Astigmatism Lens System,多重散光聚焦系统)

MDA(Monochrome Adapter,单色设备)

MS(Magnetic Sensors,磁场感应器)

Porous Tungsten(活性钨)

RSDS(Reduced Swing Differential Signal,小幅度摆动差动信号)

Shadow Mask(阴罩式)

TDT(Timeing Detection Table,资料测定表)

TICRG(Tungsten Impregnated Cathode Ray Gun,钨传输阴级射线枪)

TFT(thin film transistor,薄膜晶体管)

VP(Variable Aperature Grille Pitch,可变间距光栅)

VBI(Vertical Blanking Interval,垂直空白间隙)

VDT(Video Display Terminals,显示终端)

VRR(Vertical Refresh Rate,垂直扫描频率)

4、

3D(Three Dimensional,三维)

3DS(3D SubSystem,三维子系统)

AE(Atmospheric Effects,雾化效果)

AFR(Alternate Frame Rendering,交替渲染技术)

Anisotropic Filtering(各向异性过滤)

APPE(Advanced Packet Parsing Engine,增强形帧解析引擎)

AV(Analog Video,模拟)

Back Buffer(后置缓冲)

Backface culling(隐面消除)

Battle for Eyeballs(眼球大战,各3D图形芯片公司为了争夺用户而作的竞争)

Bilinear Filtering(双线性过滤)

CG(Computer Graphics,计算机生成图像)

Clipping(剪贴纹理)

Clock Synthesizer(时钟合成器)

compressed textures(压缩纹理)

Concurrent Command Engine(协作命令引擎)

Center Processing Unit Utilization(中央处理器占用率)

DAC(Digital to Analog Converter,数模传换器)

Decal(印花法,用于生成一些半透明效果,如:鲜血飞溅的场面)

DFP(Digital Flat Panel,数字式平面显示器)

DFS: Dynamic Flat Shading(动态平面描影,可用作加速)

Dithering(抖动)

Directional Light(方向性光源)

DME: Direct Memory Execute(直接内存执行)

DOF(Depth of Field,多重境深)

dot texture blending(点型纹理混和)

Double Buffering(双缓冲区)

DIR(Direct Rendering Infrastructure,基层直接渲染)

DVI(Digital Video Interface,数字接口)

DxR(DynamicXTended Resolution,动态可扩展分辨率)

DXTC(Direct X Texture Compress,DirectX纹理压缩,以S3TC为基础)

Dynamic Z-buffering(动态Z轴缓冲区),显示物体远近,可用作远景

E-DDC(Enhanced Display Data Channel,增强形数据信道协议,定义了显示输出与主系统之间的通讯信道,能提高显示输出的画面质量)

Edge Anti-aliasing(边缘抗锯齿失真)

E-EDID(Enhanced Extended Identification Data,增强形扩充身份辨识数据,定义了计算机通讯主系统的数据格式)

Execute Buffers(执行缓冲区)

environment med bump ming(环境凹凸映射)

Extended Burst Transactions(增强式突发处理)

Front Buffer(前置缓冲)

Flat(平面描影)

Frames rate is King(帧数为王)

FSAA(Full Scene Anti-aliasing,全景抗锯齿失真)

Fog(雾化效果)

flip double buffered(反转双缓存)

fog table quality(雾化表画质)

GART(Graphic Address Remng Table,图形地址重绘表)

Gouraud Shading(高洛德描影,也称为内插法均匀涂色)

GPU(Graphics Processing Unit,图形处理器)

GTF(Generalized Timing Formula,一般程序时间,定义了产生画面所需要的时间,包括了诸如画面刷新率等)

HAL(Hardware Abstraction Layer,硬件抽像化层)

hardware motion compensation(硬件运动补偿)

HDTV(high definition television,晰度电视)

HEL: Hardware Emulation Layer(硬件模拟层)

high triangle count(复杂三角形计数)

5、音频

3DPA(3D Positional Audio,3D定位音频)

AC(Audio Codec,音频多媒体数字信号编译码器)

Auxiliary Input(输入接口)

CS(Channel Separation,声道分离)

DS3D(DirectSound 3D Streams)

DSD(Direct Stream Digital,直接数字信号流)

DSL(Down Loadable Sample,可下载的取样音色)

DLS-2(Downloadable Sounds Level 2,第二代可下载音色)

EAX(Environmental Audio Extensions,环境音效扩展技术)

FM(Frequency Modulation,频率调制)

FR(Frequence Response,频率响应)

FSE(Frequency Shifter Effect,频率转换效果)

HRTF(Head Related Transfer Function,头部关联传输功能)

IAS(Interactive Around-Sound,交互式环绕声)

MIDI(Musical Instrument Digital Interface,乐器数字接口)

NDA(non-DWORD-aligned ,非DWORD排列)

Raw PCM: Raw Pulse Code Modulated(元脉码调制)

RMA(RealMedia Architecture,实媒体架构)

RTSP(Real Time Streaming Protocol,实时流协议)

SACD(Super Audio CD,超级音乐CD)

SNR(Signal to Noise Ratio,信噪比)

S/PDIF(Sony/Phillips Digital Interface,索尼/飞利普数字接口)

SRS(Sound Retrieval System,声音修复系统)

Super Intelligent Sound ASIC(超级智慧音频集成电路)

THD+N(Total Harmonic Distortion plus Noise,总谐波失真加噪音)

QEM(QSound Environmental Modeling,QSound环境建模)

WG(We Guide,波导合成)

WT(We Table,波表合成)

6、RAM&ROM

ABP(Address Bit Permuting,地址位序列改变)

ATC(Access Time from Clock,时钟存取时间)

BSRAM(Burst pipelined synchronous static RAM,突发式管道同步静态内存)

CAS(Column Address Strobe,列地址控制器)

CCT(Clock Cycle Time,时钟周期)

DB(Deep Buffer,深度缓冲)

DDR SDRAM(Double Date Rate,双数据率SDRAM)

DIL(dual-in-line)

DIMM(Dual In-line Memory Modules,双重内嵌式内存模块)

DRAM(Dynamic Random Access Memory,动态随机内存)

DRDRAM(Direct RAMbus DRAM,直接RAMbus内存)

ECC(Error Checking and Correction,错误检查修正)

EEPROM(Electrically Erasable Programmable ROM,电擦写可编程只读存储器)

FM(Flash Memory,闪存)

FMD ROM (Fluorescent Material Read Only Memory,荧光质只读存储器)

PIROM(Processor Information ROM,处理器信息ROM)

PLEDM(Phase-state Low Electron(hole)-number Drive Memory)

RAC(Rambus Asic Cell,Rambus集成电路单元)

RAS(Row Address Strobe,行地址控制器)

RDRAM(Rambus Direct RAM,直接型RambusRAM)

DIMM(RAMBUS In-line Memory Modules,RAMBUS内嵌式内存模块)

SDR SDRAM(Single Date Rate,单数据率SDRAM)

SGRAM(synchronous graphics RAM,同步图形随机储存器)

SO-DIMM(Small Outline Dual In-line Memory Modules,小型双重内嵌式内存模块)

SPD(Serial Presence Detect,串行存在检查)

SRAM(Static Random Access Memory,静态随机内存)

SSTL-2(Stub Series Terminated Logic-2)

TSOPs(thin small outline packages,超小型封装)

USWV(Uncacheable,Speculative,Write-Combining非缓冲随机混合写入)

VCMA(Virtual Channel Memory architecture,虚拟信道内存结构)

7、磁盘

AAT(Average access time,平均存取时间)

ABS(Auto Balance System,自动平衡系统)

ASMO(Advanced Storage Magneto-Optical,增强形光学内存)

AST(Average Seek time,平均寻道时间)

ATA(AT Attachment,AT扩展型)

ATOMM(Advanced super Thin-layer and high-Output Metal Media,增强形超薄高速金属媒体)

bps(bit per second,位/秒)

CSS(Common Command Set,通用指令集)

DMA(Direct Memory Access,直接内存存取)

DVD(Digital Video Disk,数字光盘)

EIDE(enhanced Integrated Drive Electronics,增强形电子集成驱动器)

FAT(File Allocation Tables,文件分配表)

FDBM(Fluid dynamic bearing motors,液态轴承马达)

FDC(Floppy Disk Controller,软盘驱动器控制装置)

FDD(Floppy Disk Driver,软盘驱动器)

GMR(giant magnetoresistive,巨型磁阻)

HDA(head disk assembly,磁头集合)

HiFD(high-capacity floppy disk,高容量软盘)

IDE(Integrated Drive Electronics,电子集成驱动器)

LBA(Logical Block Addressing,逻辑块寻址)

MBR(Master Boot Record,主引导记录)

MTBF(Mean Time Before Failure,平均故障时间)

PIO(Programmed Input Output,可编程输入输出模式)

PRML(Partial Response Maximum Likelihood,最大可能部分反应,用于提高磁盘读写传输率)

RPM(Rotation Per Minute,转/分)

RSD(Removable Storage Device,移动式存储设备)

SCSI(Small Computer System Interface,小型计算机系统接口)

SCMA(SCSI Configured Auto Magically,SCSI自动配置)

S.M.A.R.T.(Self-Monitoring, Analysis and Reporting Technology,自动监测、分析和报告技术)

SPS(Shock Protection System,抗震保护系统)

Ultra DMA(Ultra Direct Memory Access,超高速直接内存存取)

LVD(Low Voltage Differential)

Seagate硬盘技术

DiscWizard(磁盘控制软件)

DST(Drive Self Test,磁盘自检程序)

SeaShield(防静电防撞击外壳)

8、光驱

ATAPI(AT Attachment Packet Interface)

BCF(Boot Catalog File,启动目录文件)

BIF(Boot Image File,启动映射档)

CDR(CD Recordable,可记录光盘)

CD-ROM/XA(CD-ROM eXtended Architecture,只读光盘增强形架构)

CDRW(CD-Rewritable,可重复刻录光盘)

CLV(Constant Linear Velocity,恒定线速度)

DAE(digital Audio Extraction,资料音频抓取)

DDSS(Double Dynamic Suspension System,双悬浮动态减震系统)

DDSS II(Double Dynamic Suspension System II,第二代双层动力悬吊系统)

PCAV(Part Constant Angular Velocity,部分恒定角速度)

VCD(Video CD,CD)

9、打印机

AAS(Automatic Area Seagment?)

dpi(dot per inch,每英寸的打印像素)

ECP(Extended Capabilities Port,延长能力埠)

EPP(Enhanced Parallel Port,增强形并行接口)

IPP(Internet Printing Protocol,因特网打印协议)

ppm(paper per minute,页/分)

SPP(Standard Parallel Port,标准并行口)

TET(Text Enhanced Technology,文本增强技术)

USBDCDPD(Universal Serial Bus Device Class Definition for Printing Devices,打印设备的通用串行总线级标准)

VD(Variable Dot,变点式打印)

10、扫描仪

TWAIN(Toolkit Without An Interesting Name,协议)

先进封装市场恐生变

1

、你再加条4G,那就是有两条内存了,所以直接就是双通道了,

2、

正常使用的话,其实性能提升的感觉不是太明显,最直观的是你可以同时运行更多的程序了,可以多开更多的游戏。

3

、如果你是集成显卡的话,那么显卡的性能提升非常明显,可以说天差地别

4、理论性能肯定是翻一倍,但实际性能是否达到这么高就需要看你拿来干什么,如果是大型3D游戏的话双通道可以带来场景流畅度的一定提升(更主要看CPU和显卡),如果只是看**上网玩小游戏什么的完全看不出来任何性能提升

内存一般指的是随机存取存储器,简称RAM。前面提到静态内存(SRAM)用作系统的高速缓存,而我们平常所提到的电脑的内存指的是动态内存,即DRAM。除此之外,还有各种用途的内存,如显示卡使用的VRAM,存储系统设置信息的CMOS

RAM等。

动态内存中所谓的“动态”,指的是当我们将数据写入DRAM后,经过一段时间,数据会丢失,因此需要一个内存刷新(Memory

Refresh)的操作,这要额外设计一个电路。

我们可以这样理解:一个DRAM的存储单元存储的是0还是1取决于电容是否有电荷,有电荷代表1,无电荷代表0。但时间一长,代表1的电容会放电,代表0的电容会吸收电荷,这就是数据丢失的原因;

刷新操作定期对电容进行检查,若电量大于满电量的1/2,则认为其代表1,并把电容充满电;若电量小于1/2,则认为其代表0,并把电容放电,籍此来保持数据的连续性。有了刷新操作,动态内存的存取速度比静态内存要慢很多。

主要是在多任务的情况下速度要快些,

内存实际上就是一块临时是有存储空间,每一个软件在运行的时候都要来划一块,所以如果内存比较小的话,运行几个程序后再运行一个程序它们就要抢内存了,也就是说此时的内存已经严重的影响了机子的速度,但是如果内存足够大的话,这个问题很明显就不会出现了。所以并不是内存越大你的速度越快,你内存小,只同时运行一两个任务的话,同样是很快的

一镜双光圈带来更多摄影弹性, Galaxy S9 Plus 动手玩

近日,有台湾地区媒体报道,台积电已将2.5D封装技术CoWoS(Chip On Wafer On Substrate)业务的部分流程(On Substrate,简称oS)外包给了OSAT厂商,主要集中在小批量定制产品方面。而类似的合作模式预计将在未来的3D IC封装中继续存在。

CoWoS技术先将芯片通过Chip on Wafer(CoW)的封装制程连接至硅晶圆,再把CoW芯片与基板连接(oS)。

台积电拥有高度自动化的晶圆级封装技术,而oS流程无法实现自动化的部分较多,需要更多人力,而日月光(ASE)、矽品、安靠(Amkor)等顶尖OSAT厂商在oS流程处理方面的经验更多。

在过去几年里,台积电已经陆续将部分封装业务的oS流程外包给了上述OSAT厂商,包括使用FOWLP和InFO封装工艺的HPC芯片。

消息人士称,在封装业务方面,台积电最赚钱的是晶圆级SiP技术,如CoW和WoW,其次是FOWLP和InFO,而oS的利润最低。由于异构芯片集成需求显著增长,预计台积电会将更多的低利润封装业务交给OSAT。

无论以上消息是否属实,在制程工艺进步艰难的当下,先进封装的重要性愈加凸出,而台积电作为领先企业,其先进制程和封装高度融合能力将引领今后几年的芯片封装市场,相应举动对市场格局也会产生影响。

先进封装市场快速升温

Yole预测,2017~2022 年,全球先进封装技术:2.5D&3D,Fan-out,Flip-Chip的收入年复合增长率分别为28%、36%和8%,而同期全球封测行业收入年复合增长率为3.5%,明显领先于传统封装市场。2021年,OSAT厂商将花费不低于67亿美元用于先进封装的技术研发、设备购和基础设施建设。此外,不只是OSAT,台积电和英特尔也在先进封装上花费巨大。

在这场竞赛中,最抢眼的有5家企业,分别是日月光、台积电、英特尔、Amkor和江苏长电(JCET)。其中,台积电在2021年斥资25亿至28亿美元,以基于其 InFO、CoWoS 和 SoIC 的产品线来建设封装厂。Yole估计,台积电在2020年从先进封装中获得了36亿美元的营收。

另外,OSAT霸主日月光宣布,将向其晶圆级封装业务投入20亿美元;英特尔则宣布,将在美国亚利桑那州投资200亿美元建设晶圆厂,并扩大其在亚利桑那州和俄勒冈州工厂的Foveros/EMIB封装业务,此外,还将投资先进封装的合作项目,这方面的合作对象主要是台积电。

先进封测技术可以提高封装效率、降低成本、提供更好的性价比。目前来看,先进封装主要包括倒装(Flip Chip)、凸块(Bumping)、晶圆级封装(Wafer level package)、2.5D封装、3D封装(TSV)等技术。先进封装在诞生之初只有WLP、2.5D和3D这几种,近年来,先进封装向各个方向快速发展,而每个开发相关技术的公司都将自己的技术独立命名,如台积电的InFO、CoWoS,日月光的FoCoS,Amkor的SLIM、SWIFT等。

在中国大陆地区,2015年以前,只有长电 科技 能够跻身全球前十,而在2017年,三家封测企业营收分别增长 25%、28%、42%。长电 科技 一跃成为全球OSAT行业中收入的第3名。

在技术储备方面, 在大陆三大龙头封测企业当中,长电 科技 的先进封装技术优势最为突出。据悉,其掌握了Fan-out eWLB(embedded wafer level BGA),WLCSP(wafer-level chip scale packaging),SiP,Bumping,PoP(package on package)等高端封装技术。

5G需求最强烈

随着手机越来越轻薄,在有限的空间里要塞入更多组件,这就要求芯片的制造技术和封装技术都要更先进才能满足市场需求。特别是在5G领域,要用到MIMO技术,天线数量和射频前端(RFFE)组件(PA、射频开关、收发器等)的数量大增,而这正是先进封装技术大显身手的时候。

目前来看,SiP技术已经发展到了一个较为成熟的阶段,由于SoC良率提升难度较大。为了满足多芯片互联、低功耗、低成本、小尺寸的需求,SIP是一个不错的选择。SiP从封装的角度出发,将多种功能芯片,如处理器、存储器等集成在一个封装模块内,成本相对于SoC大幅度降低。另外,晶圆制造工艺已经来到7nm时代,后续还会往5nm、3nm挑战,但伴随而来的是工艺难度将会急剧上升,芯片级系统集成的难度越来越大。SIP给芯片集成提供了一个既满足性能需求又能减少尺寸的解决方案。

而为了满足5G的需求,在SiP的基础上,封装技术还在演进。通过更先进的封装技术,可解决产品尺寸过大、耗电及散热等问题,并利用封装方式将天线埋入终端产品,以提升传输速度。

以5G手机为例,应用讲究轻薄短小、传输快速,且整体效能取决于核心的应用处理器(AP)芯片,而随着5G高频波段的启用,负责传输信号的射频前端(RFFE)和天线设计也越来越复杂,需要先进封装技术的支持。

竞争加剧

近几年,虽然排名前十的厂商一直未有大的变化,但是它们之间的竞争激烈程度与日俱增,特别是市场对先进封装技术的需求量快速增长,这也逐渐成为了优秀封测企业的试金石。不仅是传统的OSAT封测企业,近些年,一些IDM和晶圆代工厂也在企业内部大力发展封测业务,以提升其生产效率和自主能力,而且,这些企业研发的一般都是先进的封测技术。在这类企业中,典型代表就是台积电、三星和英特尔。

如台积电的InFO(Integrated Fan-Out),就是其标志性技术。另外还有CoWoS(Chip on Wafer on Substrate)封装技术。该技术是为解决能耗问题而发展出的2.5D封装解决方案。此外,台积电还在研发和推广其3D封装技术——SoIC。

近些年,为了提升综合竞争力,三星也在发展先进封装技术,但与台积电相比还是有差距。代表技术是“面板级扇出型封装”FOPLP),FOPLP是将输入/输出端子电线转移至半导体芯片外部,提高性能的同时,也能降低生产成本。

英特尔自研的先进封装技术是EMIB(嵌入式多芯片互连桥接)2D封装 和 Foveros 3D封装。此外,还有用于以上封装的先进芯片互连技术,包括Co-EMIB、ODI和MDIO。

有了IDM和晶圆代工厂的加入,封测业的竞争或许将更加激烈,在多方势力的竞逐下,在不久的将来,不知道传统OSAT封测企业的格局是否会被打破。

先进制程工艺对封装提出了更高要求,或者说,先进封装在一定程度上可以弥补制程工艺的不足。因此,最近几年,台积电和三星不断在3D先进封装技术方面加大投入,争取把更多的先进技术掌握在自己手中。

在台积电2021 线上技术研讨会期间,该公司披露了3DFabric系统整合解决方案,并将持续扩展由三维硅堆栈及先进封装技术组成的3DFabric。

台积电指出,针对高性能运算应用,将于2021年提供更大的光罩尺寸,以支持整合型扇出暨封装基板(InFO_oS)和CoWoSR封装方案,运用范围更大的布局规划来整合chiplet及高带宽内存。

此外,系统整合芯片方面,芯片堆栈于晶圆之上的版本预计今年完成7nm的验证,并于2022年在崭新的全自动化晶圆厂开始生产。

针对移动应用,台积电则推出了InFO_B解决方案,将移动处理器整合于轻薄精巧的封装之中,提供强化的性能和功耗效率,并且支持移动设备芯片制造厂商封装时所需的动态随机存取内存堆栈。

台积电还将先进封装的业务拓展到了日本,这也需要一笔可观的投资。日本经产省表示,台积电将在日本茨城县筑波市设立研发据点,总经费约370亿日元,日本将出资总经费约5成予以支持。据悉,拥有领先封装技术的日本企业Ibiden、半导体装置厂商芝浦机械(Shibaura Machine )等与半导体有关的约20家日本企业有望参与研发,重点就是“小芯片”和3D封装技术。

三星研发的3D封装技术为X-Cube,该技术利用TSV封装,可让多个芯片进行堆叠,制造出单一的逻辑芯片。

三星在7nm制程的测试过程中,利用TSV 技术将SRAM 堆叠在逻辑芯片顶部,这也使得在电路板的配置上,可在更小的面积上装载更多的存储单元。X-Cube还有诸多优点,如芯片间的信号传递距离更短,以及将数据传送、能量效率提升到最高。

三星表示,X-Cube可让芯片工程师在进行定制化解决方案的设计过程中,能享有更多弹性,也更贴近他们的特殊需求。

2020年至今,日月光在先进封装研发方面取得了多项成果,具体包括:覆晶封装方面,实现了7nm/10nm芯片制程技术认证,14nm/16nm铜制程/超低介电芯片覆晶封装应用、银合金线于混合式覆晶球格阵列式封装技术;焊线封装方面,开发了第二代先进整合组件内埋封装技术、超细间距与线径铜/金焊线技术,移动式存储技术、晶圆级扇出式RDL 打线封装;晶圆级封装方面,有扇出型30um芯片厚度研磨前切割技术、8 Hi HBM CPD晶圆高精准度(+/-2um)研磨技术、晶圆穿导孔、玻璃基板封装、晶圆级芯片尺寸六面保护封装技术开发、扇出型PoP芯片产品开发、晶粒贴合晶圆制程技术;先进封装与模组方面,开发了低功耗天线设计与封装技术、可弯曲基板及封装技术、双面薄化无线通讯模组技术、5G天线封装等;面板级封装方面,开发了扇出型动态补偿光罩之面板级封装技术。

在此基础上,日月光将在2021年持续扩大先进制程与产能规模,特别是在5G、SiP、感应器、车用电子及智能型装置方面,会进一步加大投入力度。此外,预计多芯片及感应器相关需求会增加。

结语

封装对于提升芯片整体性能越来越重要,随着先进封装朝着小型化和集成化的方向发展,技术壁垒不断提高。未来,先进封装市场规模有望快速提升,技术领先的龙头厂商则会享受最大红利。

晶圆 集成电路 设备 汽车 芯片 存储 台积电 AI 封装

推进半导体技术发展的五大趋势

三星今年上半年的重头戏仍是 Galaxy S 系列的新传人 Galaxy S9 ,乍看下延续 Galaxy S8 的风格,不过除了硬体规格提升以外,细部设计也有不小的调整,然而回到现实使用层面, Galaxy 最大的突破点,则是能在如此薄型设计的智慧手机首度导入双光圈可变设计,这也为拍照这档事提供了更高的弹性,至于这次试用的 S9 Plus 则还具备双主镜头的特色。

Galaxy S9 Plus 的整体设计在正面与前一代的 Galaxy S8 Plus 相当接近,同样搭载 18.5:9 的 6.2 吋显示器,此外并未跟风的用自由边框设计的萤幕,虽然如此,但早在 Galaxy S8 时三星就在萤幕上下的机构进行紧凑设计,仍有着出色的正面萤幕占比,同时也不会让萤幕顶端有怪异的"浏海"设计。

相较 Galaxy S8 的机背, Galaxy S9 系列的相机与指纹辨识位置的配置可说正常许多,不知甚么原因, Galaxy S8 为了强化正面萤幕占比,正式将过往与 Home 键整合的指纹辨识器挪到机身后方,却将指纹辨识摆在正常握持时相机的水平方向,导致不少使用者在指纹解锁时不小心将手指的油渍沾到镜头外而影响拍摄品质, Galaxy S9 系列则改将指纹辨识放在垂直位置,如此一来也不会轻易误触了。

此外在细部方面, Galaxy S9 Plus 仍在音量键下方用 Bixby 快捷键,借此推广消费者使用 Bixby 的方式在 Galaxy S8 系列就已经成定局;此外笔者发现这次机背玻璃下的颜色终于不再是由网点构成,否则先前总有一种印刷解析度不够的错觉。

对于喜欢聆听音乐的朋友, Galaxy S9 系列这次导入双扬声器设计,利用萤幕上方与机身下方各一个扬声器作为配置,并辅以与 AKG 、 Dolby Atmos 合作,音量与临场感也更好,另外也保留 3.5mm 耳机孔,对于已经购买高品质耳机机的玩家,也不用伤脑筋该改用数位介面转接或是蓝牙介面让自己心爱的耳机继续在新手机上使用。 ?

三星台湾版的 Galaxy S9 Plus 所搭载的处理器延续传统,继续维持三星自家的 Exynos 应用处理器,而这次是隶属 Exynos 9 系列的 Exynos 9810 ,相较先前 Exynos 8895 可说是跨世代的架构变化,不仅是在时脉提升与 GPU 架构改变, Exynos 9810 的 CPU 更是可支援 Arm DynamIQ , CPU 在多核的性能也更胜过往的 big.LITTLE 。

至于使用体验方面,仍旧维持三星一贯的设计风格,包括取消正面实体按键后改用虚拟键设计,并且可弹性配置返回与执行中 列表键位置,以及用由下往上滑动叫出 清单等功能,同时也保有从侧边滑出快捷功能的设计,整体配置对长期使用三星手机的消费者应该不陌生。

安全认证机制方面, Galaxy S9 系列大致上与 Galaxy S8 相同,并未如早期传言用类似 iPhone X 的 3D 脸部扫描,仍维持虹膜、前相机的多点脸部辨识与指纹辨识,不过此次加入双重脸部辨识模式,可感测当下的光源环境,并自动选定使用基于前相机的脸部或是用虹膜,毕竟两种辨识机制在不同光源下各有优势,如此一来也可避免透过单一机制在特定环境下不易辨识的问题。

不过要提到 Galaxy S9 系列真正创新之处,莫过于使用一镜双光圈的设计,提到可改变光圈设计,应该是不少有传统相机或是数位单眼相机使用经验的玩家在专业模式操作手机较大的困扰,同时也是让手机在特定场合难以超越传统数位相机的关键。

可变光圈设计能让手机控制进光量,并借此获得景深的变化、并改变画质等特性,然而在智慧手机上,由于考虑整体厚度,除了一度直接挪用数位相机机构的几款特殊手机外,所有的手机都无法如传统相机一样搭载可变光圈机构,毕竟可变光圈机构会需要复杂的连动机制,尤其像专业相机镜头的光圈是由多片叶片嵌合,构成中央趋近圆形的可变光圈开口,空间与厚度有限的手机不可能使用这么复杂的机构。

看更多S9实测:男友视角拍摄攻略:「手机界的单眼」春游考验,Samsung Galaxy S9+ 网美(的男伴)实测

当然 Galaxy S9 系列用的可变光圈设计也不像专业镜头那么复杂,其原理较为接近古式镜头的插片式光圈(有兴趣可见 Lomography 复刻镜的插片式光圈设计),也就是借由盖上光圈插片后提供不同的光圈,同时顾及到机构设计的复杂度,仅有一段式(也就是一片)的光圈插片,当盖上孔径较小的光圈插片,光圈自然就从 f1.5 变成 f2.4 。

光圈能够缩减到 f2.4 ,理论上会在景深与画质有所变化,不过由于 Galaxy S9 的相机相当广,景深虽有些许差异,但不至于太明显;然而在一般光线下,将光圈改为 f2.4 时,画质则有微幅的提升感,另外在夜拍时,更可借由将光圈改用 f2.4 ,减少部分光源产生的明显眩光,这也是有两重光圈所带来的好处。

另外 Galaxy S9 Plus 还搭载与主镜头两倍的标准镜头,虽然没有双光圈设计,但除了可在两倍焦段提供非裁切的影像品质,也有更好的边缘变形抑制,同时还有标准版 Galaxy S9 所不具备的即时景深预览拍摄,可直接在取景时切换景深效果。不过笔者也注意到,使用景深预览拍摄的照片彩度似乎比直接拍摄鲜艳许多,或许是因为是合成影像产生的附加效果吧。

同时 Galaxy S9 系列也将慢动作拍摄提升一倍的性能,可达到 240fps 高速拍摄,除了应用处理器的性能提升外,也有赖于 Galaxy S9 所使用的感光元件也如同 Sony 用于旗舰机的 Exmor RS 元件一样嵌合高速 SRAM ,使得影像暂存写入速度更快。

在 240fps 拍摄的焦段会约使用等效 2 倍的区块(也就是元件区块裁切),同时为了达到高速拍摄的需要,在暗部会将 ISO 拉高,故也如同 Sony 的超级慢动作一样在光线昏暗的区域杂讯会比较明显,且会因为光源特性发生闪烁,另外可缓冲的秒速会使得拍摄某些速度不是特别快的题材(如地面电车)效果不够明显。

此次还主打一个新机能、虚拟人偶拍摄,这项功能像是 AR 趣味拍摄的延伸应用,不过加入了分析使用者脸部五官特征、用以创造个人虚拟形象的功能,建立特征时,需透过一张去除眼镜的正面照片作为基准,并从可爱风与拟真风择一。

然而由于脸型、体态仅有单一类型样板,发型、眼镜配件也只能从中挑选,若像是身形较圆润丰腴,虚拟人偶的相似度就不太高,像是笔者与另一位同事的虚拟形象都与本人有些差距,不过五官的部分还是有抓到特征,只能安慰自己如果瘦下来大概就是这样子了。

建立虚拟人偶之后,也会依照虚拟人偶形象自动产生多个 GIF 动画,可直接在社群上使用作为贴图,另外也由于是 AR 趣味拍摄的延伸应用,当然也能用以录制短片,对某些时候想要说些甚么、但又羞于让别人看到自己真实的样貌,就可利用虚拟人偶录制的短片代为传情啦。

作为三星新一代的旗舰机, Galaxy S9 有着传承与进化两个面向,传承来自 Galaxy S6 以来的新世代设计与机能基础,包括外型设计语言, UI 设计,生活防水等等特色,让熟悉 Galaxy S 系列的消费者能够马上上手,同时也更具产品识别性。

而在进化面,则以不断提升的拍照功能与安全性,为目前智慧手机除了上网、打电话以外最重要的使用行为带来更好的使用体验,或许在近期智慧手机市场剧烈变化后,与其加入看似创新却不见是消费者需要的功能,取稳扎稳打并强化既有的优势面成了现在新一代旗舰机的设计理念。

看更多S9实测:男友视角拍摄攻略:「手机界的单眼」春游考验,Samsung Galaxy S9+ 网美(的男伴)实测

点我购物去

3DS破解是什么意思?烧录卡是什么?

过去几十年,全球半导体行业增长主要受台式机、笔记本电脑和无线通信产品等尖端电子设备的需求,以及基于云计算兴起的推动。这些增长将继续为高性能计算市场领域开发新应用程序。

首先,5G将让数据量呈指数级增长。我们需要越来越多的服务器来处理和存储这些数据。2020年Yole报告,这些服务器核心的高端CPU和GPU的复合年增长率有望达到29%。它们将支持大量的数据中心应用,比如超级计算和高性能计算服务。在云 游戏 和人工智能等新兴应用的推动下,GPU预计将实现更快增长。例如,2020年3月,互联网流量增长了近50%,法兰克福的商业互联网数据交换创下了数据吞吐量超过每秒9.1兆兆位的新世界纪录。

第二个主要驱动因素是移动SoC——智能手机芯片。这个细分市场增长虽然没有那么快, 但这些SoC在尺寸受限的芯片领域对更多功能的需求,将推动进一步技术创新。

除了逻辑、内存和3D互联的传统维度扩展之外,这些新兴应用程序将需要利用跨领域的创新。这需要在器件、块和SoC级别进行新模块、新材料和架构的改变,以实现在系统级别的效益。我们将这些创新归纳为半导体技术的五展趋势。

趋势一:摩尔定律还有用,将为半导体技术续命8到10年…

在接下来的8到10年里,CMOS晶体管的密度缩放将大致遵循摩尔定律。这将主要通过EUV模式和引入新器件架构来实现逻辑标准单元缩放。

在7nm技术节点上引入了极紫外(EUV)光刻,可在单个曝光步骤中对一些最关键的芯片结构进行了设计。在5nm技术节点之外(即关键线后端(BEOL)金属节距低于28-30nm时),多模式EUV光刻将不可避免地增加了晶圆成本。最终,我们希望高数值孔径(High-NA) EUV光刻技术能够用于行业1nm节点的最关键层上。这种技术将推动这些层中的一些多图案化回到单图案化,从而提供成本、产量和周期时间的优势。

Imec对随机缺陷的研究对EUV光刻技术的发展具有重要意义。随机打印故障是指随机的、非重复的、孤立的缺陷,如微桥、局部断线、触点丢失或合并。改善随机缺陷可使用低剂量照射,从而提高吞吐量和成本。

为了加速高NA EUV的引入,我们正在安装Attolab,它可以在高NA EUV工具面世之前测试一些关键的高NA EUV材料(如掩膜吸收层和电阻)。目前Attolab已经成功地完成了第一阶段安装,预计在未来几个月将出现高NA EUV曝光。

除了EUV光刻技术的进步之外,如果没有前沿线端(FEOL)设备架构的创新,摩尔定律就无法延续。如今,FinFET是主流晶体管架构,最先进的节点在6T标准单元中有2个鳍。然而,将鳍片长度缩小到5T标准单元会导致鳍片数量减少,标准单元中每个设备只有一个鳍片,导致设备的单位面积性能急剧下降。这里,垂直堆叠纳米薄片晶体管被认为是下一代设备,可以更有效地利用设备占用空间。另一个关键的除垢助推器是埋地动力轨(BPR)。埋在芯片的FEOL而不是BEOL,这些BPR将释放互连路由。

将纳米片缩放到2nm一代将受到n-to-p空间约束的限制。Imec设想将Forksheet作为下一代设备。通过用电介质墙定义n- p空间,轨道高度可以进一步缩放。与传统的HVH设计相反,另一个有助于提高路由效率的标准单元架构发展是针对金属线路的垂直-水平-垂直(VHV)设计。最终通过互补场效应晶体管(CFET)将标准cell缩小到4T,之后充分利用cell层面上的第三维度,互补场效应晶体管通过将n-场效应晶体管与p-场效应晶体管折叠。

趋势2: 在固定功率下,逻辑性能的提高会慢下来

有了上述的创新,我们期望晶体管密度能遵循摩尔所规划的路径。但是在固定电源下,节点到节点的性能改进——被称Dennard缩放比例定律,Dennard缩放比例定律(Dennard scaling)表明,随着晶体管变得越来越小,它们的功率密度保持不变,因此功率的使用与面积成比例;电压和电流的规模与长度成比例。

世界各地的研究人员都在寻找方法来弥补这种减速,并进一步提高芯片性能。上述埋地电力轨道预计将提供一个性能提高在系统水平由于改进的电力分配。此外,imec还着眼于在纳米片和叉片装置中加入应力,以及提高中线的接触电阻(MOL)。

二维材料如二硫化钨(WS2)在通道中有望提高性能,因为它们比Si或SiGe具有更强的栅长伸缩能力。其中基于2d的设备架构包括多个堆叠的薄片非常有前景,每个薄片被一个栅极堆叠包围并从侧面接触。模拟表明,这些器件在1nm节点或更大节点上比纳米片的性能更好。为了进一步改善这些器件的驱动电流,我们着重改善通道生长质量,在这些新材料中加入掺杂剂和提高接触电阻。我们试图通过将物理特性(如生长质量)与电气特性相关联来加快这些设备的学习周期。

除了FEOL, 走线拥挤和BEOL RC延迟,这些已经成为性能改善的重要瓶颈。为了提高通径电阻,我们正在研究使用Ru或Mo的混合金属化。我们预计半镶嵌(semi-damascene)金属化模块可同时改善紧密距金属层的电阻和电容。半镶嵌(semi-damascene) 可通过直接模式和使用气隙作为介电在线路之间(控制电容增加)

允许我们增加宽高比的金属线(以降低电阻)。同时,我们筛选了各种替代导体,如二元合金,它作为‘good old’ Cu的替代品,以进一步降低线路电阻。

趋势3:3D技术使更多的异构集成成为可能

在工业领域,通过利用2.5D或3D连接的异构集成来构建系统。这些有助于解决内存问题,可在受形状因素限制的系统中添加功能,或提高大型芯片系统的产量。随着逻辑PPAC(性能-区域-成本)的放缓,SoC 的智能功能分区可以提供另一个缩放旋钮。一个典型的例子是高带宽内存栈(HBM),它由堆叠的DRAM芯片组成,这些芯片通过短的interposer链路直接连接到处理器芯片,例如GPU或CPU。最典型的案例是Intel Lakefield CPU上的模对模堆叠, AMD 7nm Epyc CPU。在未来,我们希望看到更多这样的异构SOC,它是提高芯片性能的最佳桥梁。

在imec,我们通过利用我们在不同领域(如逻辑、内存、3D…)所进行的创新,在SoC级别带来了一些好处。为了将技术与系统级别性能联系起来,我们建立了一个名为S-EAT的框架(用于实现高级技术的系统基准测试)。这个框架可评估特定技术对系统级性能的影响。例如:我们能从缓存层次结构较低级别的片上内存的3D分区中获益吗?如果SRAM被磁存储器(MRAM)取代,在系统级会发生什么?

为了能够在缓存层次结构的这些更深层次上进行分区,我们需要一种高密度的晶片到晶片的堆叠技术。我们已经开发了700nm间距的晶圆-晶圆混合键合,相信在不久的将来,键合技术的进步将使500nm间距的键合成为可能。

通过3D集成技术实现异质集成。我们已经开发了一种基于sn的微突起互连方法,互连间距降低到7?m。这种高密度连接充分利用了透硅通孔技术的潜力,使>16x更高的三维互联密度在模具之间或模具与硅插接器之间成为可能。这样就大大降低了对HBM I/O接口的SoC区域需求(从6 mm2降至1 mm2),并可能将HBM内存栈的互连长度缩短至多1 mm。使用混合铜键合也可以将模具直接与硅结合。我们正在开发3?m间距的模具到晶圆的混合键合,它具有高公差和放置精度。

由于SoC变得越来越异质化,一个芯片上的不同功能(逻辑、内存、I/O接口、模拟…)不需要来自单一的CMOS技术。对不同的子系统用不同的工艺技术来优化设计成本和产量可能更有利。这种演变也可以满足更多芯片的多样化和定制化需求。

趋势4:NAND和DRAM被推到极限;非易失性存储器正在兴起

内存芯片市场预测显示,2020年内存将与2019年持平——这一变化可能部分与COVID-19减缓有关。2021年后,这个市场有望再次开始增长。新兴非易失性存储器市场预计将以>50%的复合年增长率增长,主要受嵌入式磁随机存取存储器(MRAM)和独立相变存储器(PCM)的需求推动。

NAND存储将继续递增,在未来几年内可能不会出现颠覆性架构变化。当今最先进的NAND产品具有128层存储能力。由于晶片之间的结合,可能会产生更多的层,从而使3D扩展继续下去。Imec通过开发像钌这样的低电阻字线金属,研究备用存储介质堆,提高通道电流,并确定控制压力的方法来实现这一路线图。我们还专注于用更先进的FinFET器件取代NAND的平面逻辑晶体管。我们正在 探索 3D FeFET与新型纤锌矿材料,作为3D NAND替代高端存储应用。作为传统3D NAND的替代品,我们正在评估新型存储器的可行性。

对于DRAM,单元缩放速度减慢,EUV光刻可能需要改进图案。三星最近宣布EUV DRAM产品将用于10nm (1a)级。除了 探索 EUV光刻用于关键DRAM结构的模式,imec还为真正的3D DRAM解决方案提供了构建模块。

在嵌入式内存领域,我通过大量的努力来理解并最终拆除所谓的内存墙,CPU从DRAM或基于SRAM的缓存中访问数据的速度有多快?如何确保多个CPU核心访问共享缓存时的缓存一致性?限制速度的瓶颈是什么? 我们正在研究各种各样的磁随机存取存储器(MRAM),包括自旋转移转矩(STT)-MRAM,自旋轨道转矩(SOT)-MRAM和电压控制磁各向异性(VCMA)-MRAM),以潜在地取代一些传统的基于SRAM的L1、L2和L3缓存(图4)。每一种MRAM存储器都有其自身的优点和挑战,并可能通过提高速度、功耗和/或内存密度来帮助我们克服内存瓶颈。为了进一步提高密度,我们还在积极研究可与磁隧道结相结合的选择器,这些是MRAM的核心。

趋势5:边缘人工智能芯片行业崛起

边缘 AI预计在未来五年内将实现100%的增长。与基于云的人工智能不同,推理功能是嵌入在位于网络边缘的物联网端点(如手机和智能扬声器)上的。物联网设备与一个相对靠近边缘服务器进行无线通信。该服务器决定将哪些数据发送到云服务器(通常是时间敏感性较低的任务所需的数据,如重新培训),以及在边缘服务器上处理哪些数据。

与基于云的AI(数据需要从端点到云服务器来回移动)相比,边缘 AI更容易解决隐私问题。它还提供了响应速度和减少云服务器工作负载的优点。想象一下,一辆需要基于人工智能做出决定的自动 汽车 。由于需要非常迅速地做出决策,系统不能等待数据传输到服务器并返回。考虑到通常由电池供电的物联网设备施加的功率限制,这些物联网设备中的推理引擎也需要非常节能。

今天,商业上可用的边缘 AI芯片,加上快速GPU或ASIC,可达到1-100 Tops/W运算效率。对于物联网的实现,将需要更高的效率。Imec的目标是证明推理效率在10.000个Tops /W。

通过研究模拟内存计算架构,我们正在开发一种不同的方法。这种方法打破了传统的冯·诺伊曼计算模式,基于从内存发送数据到CPU(或GPU)进行计算。使用模拟内存计算,节省了来回移动数据的大量能量。2019年,我们演示了基于SRAM的模拟内存计算单元(内置22nm FD-SOI技术),实现了1000Tops/W的效率。为了进一步提高到10.000Tops/W,我们正在研究非易失性存储器,如SOT-MRAM, FeFET和基于IGZO(铟镓锌氧化物)的存储器。

对CPU的认识

烧录卡是GBA NDS等掌上游戏机用的一种可插写卡带,通过烧录,让很多游戏或者各种内容能够存储在一个烧录芯片中,然后通过机器对芯片内容的读取,使用卡里的内容。

也就是说,有了烧录卡你可以不用买正版卡带就能玩很多游戏,只要把网上的游戏下载下来,烧录到烧录卡中就可以了。

而你说的TF卡是一种内存卡,给烧录卡提供足够的存储空间用的。

3DS主机目前可以买的,现在大部分烧录卡都能够支持。但是在3DS上你只能玩DS,GBA等游戏,3DS的游戏目前不能运行烧录。

========================================

拓展

任天堂3DS( 日文:ニンテンドー3DS,英文:NINTENDO 3DS),是日本任天堂公司于2011年推出的第四代便携式游戏机,属任天堂DS后续机种,2012年11月1日在日本上市。利用视差障壁技术,让玩家不需配戴特殊眼镜即可感受到裸眼3D图像。该平台向下兼容任天堂DS软件。 2012年9月发行繁体中文版3DS。2012年11月发行简体中文版3DS。

目前任天堂3DS有四个衍生机型,分别是2012年上市的大屏幕任天堂3DS LL;2014年10月起发售的新3DS与新任天堂3DS LL/XL。 2015年1月26日为止,任天堂3DS日本国内销量已突破1900万台。

截至2017年12月末?[3]?3DS方面硬件7199万台,软件3亿6050万份。

来源:任天堂3DS

5800x3d是am4还是am5

CPU是中央处理单元(central process Unit)的缩写,它可以被简称做微处理器。(mcroprocessor),不过经常被人们直接称为处理器(processor)。不要因为这些简称而忽视它的作用,cpu是计算机的核心,其重要性好比心脏对于人一样。实际上,处理器的作用和大脑更相似,因为它负责处理、运算计算机内部的所有数据,而主板芯片组则更像是心脏,它控制着数据的交换。cpu的种类决定了你使用的操作系统和相应的软件。CPU主要由运算器、控制器、寄存器组和内部总线等构成,是PC的核心,再配上储存器、输入/输出接口和系统总线组成为完整的PC

CPU主要由运算器、控制器、寄存器组和内部总线等构成。寄存器组用于在指令执行过后存放操作数和中间数据,由运算器完成指令所规定的运算及操作。

任何东西从发展到壮大都会经历一个过程,CPU能够发展到今天这个规模和成就,其中的发展史更是耐人寻味。作为电脑之“芯”的CPU也不例外,本 文让我们进入时间不长却风云激荡的CPU发展历程中去。在这个回顾的过程中,我们主要叙述了目前两大CPU巨头——Intel和AMD的产品发展历程。

一、X86时代的CPU

CPU的溯源可以一直去到11年。在那一年,当时还处在发展阶段的INTEL公司推出了世界上第一台微处理器4004。这不但是第一个用于计算器的4位微处理器,也是第一款个人有能力买得起的电脑处理器!4004含有2300个晶体管,功能相当有限,而且速度还很慢,被当时的蓝色巨人IBM以及大部分商业用户不屑一顾,但是它毕竟是划时代的产品,从此以后,INTEL便与微处理器结下了不解之缘。可以这么说,CPU的历史发展历程其实也就是 INTEL公司X86系列CPU的发展历程,我们就通过它来展开我们的“CPU历史之旅”。

18年,Intel公司再次领导潮流,首次生产出16位的微处理器,并命名为i8086,同时还生产出与之相配合的数学协处理器 i8087,这两种芯片使用相互兼容的指令集,但在i8087指令集中增加了一些专门用于对数、指数和三角函数等数学计算指令。由于这些指令集应用于 i8086和i8087,所以人们也这些指令集统一称之为X86指令集。虽然以后Intel又陆续生产出第二代、第三代等更先进和更快的新型CPU,但都 仍然兼容原来的X86指令,而且Intel在后续CPU的命名上沿用了原先的X86序列,直到后来因商标注册问题,才放弃了继续用阿拉伯数字命名。至于在 后来发展壮大的其他公司,例如AMD和Cyrix等,在486以前(包括486)的CPU都是按Intel的命名方式为自己的X86系列CPU命名,但到 了586时代,市场竞争越来越厉害了,由于商标注册问题,它们已经无法继续使用与Intel的X86系列相同或相似的命名,只好另外为自己的586、 686兼容CPU命名了。

19年,INTEL公司推出了8088芯片,它仍旧是属于16位微处理器,内含29000个晶体管,时钟频率为4.77MHz,地址总线 为20位,可使用1MB内存。8088内部数据总线都是16位,外部数据总线是8位,而它的兄弟8086是16位。1981年8088芯片首次用于IBM PC机中,开创了全新的微机时代。也正是从8088开始,PC机(个人电脑)的概念开始在全世界范围内发展起来。

1982年,许多年轻的读者尚在襁褓之中的时候,INTE已经推出了划时代的最新产品枣80286芯片,该芯片比8006和8088都有了飞 跃的发展,虽然它仍旧是16位结构,但是在CPU的内部含有13.4万个晶体管,时钟频率由最初的6MHz逐步提高到20MHz。其内部和外部数据总线皆 为16位,地址总线24位,可寻址16MB内存。从80286开始,CPU的工作方式也演变出两种来:实模式和保护模式。

Intel 80286处理器

1985年INTEL推出了80386芯片,它是80X86系列中的第一种32位微处理器,而且制造工艺也有了很大的进步,与80286相比, 80386内部内含27.5万个晶体管,时钟频率为12.5MHz,后提高到20MHz,25MHz,33MHz。80386的内部和外部数据总线都是 32位,地址总线也是32位,可寻址高达4GB内存。它除具有实模式和保护模式外,还增加了一种叫虚拟86的工作方式,可以通过同时模拟多个8086处理 器来提供多任务能力。除了标准的80386芯片,也就是我们以前经常说的80386DX外,出于不同的市场和应用考虑,INTEL又陆续推出了一些其它类 型的80386芯片:80386SX、80386SL、80386DL等。1988年推出的80386SX是市场定位在80286和80386DX之间的 一种芯片,其与80386DX的不同在于外部数据总线和地址总线皆与80286相同,分别是16位和24位(即寻址能力为16MB)。

1990年推出的80386 SL和80386 DL都是低功耗、节能型芯片,主要用于便携机和节能型台式机。80386 SL与80386 DL的不同在于前者是基于80386SX的,后者是基于80386DX的,但两者皆增加了一种新的工作方式:系统管理方式。当进入系统管理方式后,CPU 就自动降低运行速度、控制显示屏和硬盘等其它部件暂停工作,甚至停止运行,进入“休眠”状态,以达到节能目的。1989年,我们大家耳熟能详的80486 芯片由INTEL推出,这种芯片的伟大之处就在于它实破了100万个晶体管的界限,集成了120万个晶体管。80486的时钟频率从25MHz逐步提高到 33MHz、50MHz。80486是将80386和数学协处理器80387以及一个8KB的高速缓存集成在一个芯片内,并且在80X86系列中首次用 了RISC(精简指令集)技术,可以在一个时钟周期内执行一条指令。它还用了突发总线方式,大大提高了与内存的数据交换速度。由于这些改进,80486 的性能比带有80387数学协处理器的80386DX提高了4倍。80486和80386一样,也陆续出现了几种类型。上面介绍的最初类型是 80486DX。1990年推出了80486SX,它是486类型中的一种低价格机型,其与80486DX的区别在于它没有数学协处理器。80486 DX2由系用了时钟倍频技术,也就是说芯片内部的运行速度是外部总线运行速度的两倍,即芯片内部以2倍于系统时钟的速度运行,但仍以原有时钟速度与外界通 讯。80486 DX2的内部时钟频率主要有40MHz、50MHz、66MHz等。80486 DX4也是用了时钟倍频技术的芯片,它允许其内部单元以2倍或3倍于外部总线的速度运行。为了支持这种提高了的内部工作频率,它的片内高速缓存扩大到 16KB。80486 DX4的时钟频率为100MHz,其运行速度比66MHz的80486 DX2快40%。80486也有SL增强类型,其具有系统管理方式,用于便携机或节能型台式机。

2、辉煌的开始——奔腾 MMX:

INTEL吸取了奔腾 Pro的教训,在1996年底推出了奔腾系列的改进版本,厂家代号P55C,也就是我们平常所说的奔腾 MMX(多能奔腾)。这款处理器并没有集成当时卖力不讨好的二级缓存,而是独辟蹊径,用MMX技术去增强性能。

MMX技术是INTEL最新发明的一项多媒体增强指令集技术,它的英文全称可以翻译“多媒体扩展指令集”。MMX是Intel公司在1996年为 增强奔腾 CPU在音像、图形和通信应用方面而取的新技术,为CPU增加了57条MMX指令,除了指令集中增加MMX指令外,还将CPU芯片内的L1缓存由原来的 16KB增加到32KB(16K指命+16K数据),因此MMX CPU比普通CPU在运行含有MMX指令的程序时,处理多媒体的能力上提高了60%左右。MMX技术不但是一个创新,而且还开创了CPU开发的新纪元,后 来的SSE,3D NOW!等指令集也是从MMX发展演变过来的。

在Intel推出奔腾 MMX的几个月后,AM也推出了自己研制的新产品K6。K6系列CPU一共有五种频率,分别是:166/200/ 233/266/300,五种型号都用了66外频,但是后来推出的233/266/300已经可以通过升级主板的BIOS 而支持100外频,所以CPU的性能得到了一个飞跃。特别值得一提的是他们的一级缓存都提高到了64KB,比MMX足足多了一倍,因此它的商业性能甚至还 优于奔腾 MMX,但由于缺少了多媒体扩展指令集这道杀手锏,K6在包括游戏在内的多媒体性能要逊于奔腾 MMX。

3、优势的确立——奔腾 Ⅱ:

19年五月,INTEL又推出了和奔腾 Pro同一个级别的产品,也就是影响力最大的CPU——奔腾 Ⅱ。第一代奔腾 Ⅱ核心称为Klamath。作为奔腾Ⅱ的第一代芯片,它运行在66MHz总线上,主频分233、266、300、333Mhz四种,接着又推出 100Mhz总线的奔腾 Ⅱ,频率有300、350、400、450Mhz。奔腾II用了与奔腾 Pro相同的核心结构,从而继承了原有奔腾 Pro处理器优秀的32位性能,但它加快了段寄存器写操作的速度,并增加了MMX指令集,以加速16位操作系统的执行速度。由于配备了可重命名的段寄存 器,因此奔腾Ⅱ可以猜测地执行写操作,并允许使用旧段值的指令与使用新段值的指令同时存在。在奔腾Ⅱ里面,Intel一改过去BiCMOS制造工艺的笨拙 且耗电量大的双极硬件,将750万个晶体管压缩到一个203平方毫米的印模上。奔腾Ⅱ只比奔腾 Pro大6平方毫米,但它却比奔腾 Pro多容纳了200万个晶体管。由于使用只有0.28微米的扇出门尺寸,因此加快了这些晶体管的速度,从而达到了X86前所未有的时钟速度。

Intel奔腾Ⅱ处理器

在接口技术方面,为了击跨INTEL的竞争对手,以及获得更加大的内部总线带宽,奔腾Ⅱ首次用了最新的solt1接口标准,它不再用陶瓷封装, 而是用了一块带金属外壳的印刷电路板,该印刷电路板不但集成了处理器部件,而且还包括32KB的一级缓存。如要将奔腾Ⅱ处理器与单边插接卡(也称SEC 卡)相连,只需将该印刷电路板(PCB)直接卡在SEC卡上。SEC卡的塑料封装外壳称为单边插接卡盒,也称SEC(Single- edgecontactCartridge)卡盒,其上带有奔腾Ⅱ的标志和奔腾Ⅱ印模的彩色图像。在SEC卡盒中,处理器封装与L2高速缓存和 TagRAM均被接在一个底座(即SEC卡)上,而该底座的一边(容纳处理器核心的那一边)安装有一个铝制散热片,另一边则用黑塑料封起来。奔腾ⅡCPU 内部集合了32KB片内L1高速缓存(16K指令/16K数据);57条MMX指令;8个64位的MMX寄存器。750万个晶体管组成的核心部分,是以 203平方毫米的工艺制造出来的。处理器被固定到一个很小的印刷电路板(PCB)上,对双向的SMP有很好的支持。至于L2高速缓存则有,512K,属于 四路级联片外同步突发式SRAM高速缓存。这些高速缓存的运行速度相当于核心处理器速度的一半(对于一个266MHz的CPU来说,即为133MHz)。 奔腾Ⅱ的这种SEC卡设计是插到Slot1(尺寸大约相当于一个ISA插槽那么大)中。所有的Slot1主板都有一个由两个塑料支架组成的固定机构。一个 SEC卡可以从两个塑料支架之间滑入Slot1中。将该SEC卡插入到位后,就可以将一个散热槽附着到其铝制散热片上。266MHz的奔腾Ⅱ运行起来只比 200MHz的奔腾Pro稍热一些(其功率分别为38.2瓦和37.9瓦),但是由于SEC卡的尺寸较大,奔腾Ⅱ的散热槽几乎相当于Socket7或 Socket8处理器所用的散热槽的两倍那么大。

除了用于普通用途的奔腾Ⅱ之外,Intel还推出了用于服务器和高端工作站的Xeon系列处理器用了Slot 2插口技术,32KB 一级高速缓存,512KB及1MB的二级高速缓存,双重独立总线结构,100MHz系统总线,支持多达8个CPU。

Intel奔腾Ⅱ Xeon处理器

为了对抗不可一世的奔腾 Ⅱ,在1998年中,AMD推出了K6-2处理器,它的核心电压是2.2伏特,所以发热量比较低,一级缓存是64KB,更为重要的是,为了抗衡Intel 的MMX指令集,AMD也开发了自己的多媒体指令集,命名为3DNow!。3DNow!是一组共21条新指 令,可提高三维图形、多媒体、以及浮点运算密集的个人电脑应用程序的运算能力,使三维图形加速器全面地发挥性能。K6-2的所有型号都内置了3DNow! 指令集, 使AMD公司的产品首次在某些程序应用中,在整数性能以及浮点运算性能都同时超越INTEL,让INTEL感觉到了危机。不过和奔腾 Ⅱ相比,K6-2仍然没有集成二级缓存,因此尽管广受好评,但始终没有能在市场占有率上战胜奔腾Ⅱ。

4、廉价高性能CPU的开端——Celeron:

在以往,个人电脑都是一件相对奢侈的产品,作为电脑核心部件的CPU,价格几乎都以千元来计算,不过随着时代的发展,大批用户急需廉价而使用的家庭电脑,连带对廉价CPU的需求也急剧增长了。

在奔腾 Ⅱ又再次获得成功之际,INTEL的头脑开始有点发热,飘飘然了起来,将全部力量都集中在高端市场上,从而给AMD,CYRIX等等公司造成了不少 乘虚而入的机会,眼看着性能价格比不如对手的产品,而且低端市场一再被蚕食,INTEL不能眼看着自己的发家之地就这样落入他人手中,又与1998年全新 推出了面向低端市场,性能价格比相当厉害的CPU——Celeron,赛扬处理器。

Celeron可以说是Intel为抢占低端市场而专门推出的,当时1000美元以下PC的热销,令AMD等中小公司在与Intel的抗争中 打了个漂亮的翻身仗,也令Intel如芒刺在背。于是,Intel把奔腾 II的二级缓存和相关电路抽离出来,再把塑料盒子也去掉,再改一个名字,这就是Celeron。中文名称为赛扬处理器。 最初的Celeron用0.35微米工艺制造,外频为66MHz,主频有266与300两款。接着又出现了0.25微米制造工艺的 Celeron333。

不过在开始阶段,Celeron并不很受欢迎,最为人所诟病的是其抽掉了芯片上的L2 Cache,自从在奔腾 Ⅱ尝到甜头以后,大家都知道了二级缓存的重要性,因而想到赛扬其实是一个被阉割了的产品,性能肯定不怎么样。实际应用中也证实了这种想法, Celeron266装在技嘉BX主板上,性能比PII266下降超过25%!而相差最大的就是经常须要用到二级缓存的程序。

Intel也很快了解到这个情况,于是随机应变,推出了集成128KB二级缓存的Celeron,起始频率为300Mhz,为了和没有集成二 级缓存的同频Celeron区分,它被命名为Celeron 300A。有一定使用电脑历史的朋友可能都会对这款CPU记忆犹新,它集成的二级缓存容量只有128KB,但它和CPU频率同步,而奔腾 Ⅱ只是CPU频率一半,因此Celeron 300A的性能和同频奔腾 Ⅱ非常接近。更诱人的是,这款CPU的超频性能奇好,大部分都可以轻松达到450Mhz的频率,要知道当时频率最高的奔腾 Ⅱ也只是这个频率,而价格是Celeron 300A的好几倍。这个系列的Celeron出了很多款,最高频率一直到566MHz,才被用奔腾Ⅲ结构的第二代Celeron所代替。

为了降低成本,从Celeron 300A开始,Celeron又重投Socket插座的怀抱,但它不是用奔腾MMX的Socket7,而是用了Socket370插座方式,通过 370个针脚与主板相连。从此,Socket370成为Celeron的标准插座结构,直到现在频率1.2Ghz的Celeron CPU也仍然用这种插座。

5、世纪末的辉煌——奔腾III:

在99年初,Intel发布了第三代的奔腾处理器——奔腾III,第一批的奔腾III 处理器用了Katmai内核,主频有450和500Mhz两种,这个内核最大的特点是更新了名为SSE的多媒体指令集,这个指令集在MMX的基础上添加 了70条新指令,以增强三维和浮点应用,并且可以兼容以前的所有MMX程序。

不过平心而论,Katmai内核的奔腾III除了上述的SSE指令集以外,吸引人的地方并不多,它仍然基本保留了奔腾II的架构,用 0.25微米工艺,100Mhz的外频,Slot1的架构,512KB的二级缓存(以CPU的半速运行)因而性能提高的幅度并不大。不过在奔腾III刚上 市时却掀起了很大的热潮,曾经有人以上万元的高价去买第一批的奔腾III。

可以大幅提升,从500Mhz开始,一直到1.13Ghz,还有就是超频性能大幅提高,幅度可以达到50%以上。此外它的二级缓存也改为和CPU主频同步,但容量缩小为256KB。

除了制程带来的改进以外,部分Coppermine 奔腾III还具备了133Mhz的总线频率和Socket370的插座,为了区分它们,Intel在133Mhz总线的奔腾III型号后面加了个“B”, Socket370插座后面加了个“E”,例如频率为550Mhz,外频为133Mhz的Socket370 奔腾III就被称为550EB。

看到Coppermine核心的奔腾III大受欢迎,Intel开始着手把Celeron处理器也转用了这个核心,在2000年中,推出了 Coppermine128核心的Celeron处理器,俗称Celeron2,由于转用了0.18的工艺,Celeron的超频性能又得到了一次飞跃, 超频幅度可以达到100%。

6、AMD的绝地反击——Athlon

在AMD公司方面,刚开始时为了对抗奔腾III,曾经推出了K6-3处理器。K6-3处理器是三层高速缓存(TriLevel)结构设计,内建有 64K的第一级高速缓存(Level 1)及256K的第二层高速缓存(Level 2),主板上则配置第高速缓存(Level 3)。K6-3处理器还支持增强型的3D Now!指令集。由于成本上和成品率方面的问题,K6-3处理器在台式机市场上并不是很成功,因此它逐渐从台式机市场消失,转进笔记本市场。

真正让AMD扬眉吐气的是原来代号K7的Athlon处理器。Athlon具备超标量、超管线、多流水线的Risc核心(3Way SuperScalar Risc core),用0.25微米工艺,集成2,200万个晶体管,Athlon包含了三个解码器,三个整数执行单元(IEU),三个地址生成单元 (U),三个多媒体单元(就是浮点运算单元),Athlon可以在同一个时钟周期同时执行三条浮点指令,每个浮点单元都是一个完全的管道。K7包含3 个解码器,由解码器将解码后的macroOPS指令(K7把X86指令解码成macroOPS指令,把长短不一的X86指令转换成长短一致的 macroOPS指令,可以充分发挥RISC核心的威力)送给指令控制单元,指令控制单元能同时控制(保存)72条指令。再把指令送给整数单元或多媒体单 元。整数单元可以同时调度18条指令。每个整数单元都是一个独立的管道,调度单元可以对指令进行分支预测,可以乱序执行。K7的多媒体单元(也叫浮点单 元)有可以重命名的堆栈寄存器,浮点调度单元同时可以调度36条指令,浮点寄存器可以保存88条指令。在三个浮点单元中,有一个加法器,一个乘法器,这两 个单元可以执行MMX指令和3DNow指令。还有一个浮点单元负责数据的装载和保存。由于K7强大的浮点单元,使AMD处理器在浮点上首次超过了 Intel当时的处理器。

Athlon内建128KB全速高速缓存(L1 Cache),芯片外部则是1/2时频率、512KB容量的二级高速缓存(L2 Cache),最多可支持到8MB的L2 Cache,大的缓存可进一步提高服务器系统所需要的庞大数据吞吐量。

Athlon的封装和外观跟Pentium Ⅱ相似,但Athlon用的是Slot A接口规格。Slot A接口源于Alpha EV6总线,时钟频率高达200MHz,使峰值带宽达到1.6GB/S,在内存总线上仍然兼容传统的100MHz总线,现这样就保护了用户的投资,也降低 了成本。后来还用性能更高的DDR SDRAM,这和Intel力推的800MHz RAMBUS的数据吞吐量差不多。EV6总线最高可以支持到400MHz,可以完善的支持多处理器。所以具有天生的优势,要知道Slot1只支持双处理器 而SlotA可支持4处理器。SlotA外观看起来跟传统的Slot1插槽很像,就像Slot1插槽倒转180度一样,但两者在电气规格、总线协议是完全 不兼容的。Slot 1/Socket370的CPU,是无法安装到Slot A插槽的Athlon主板上,反之亦然。

编者按:任何东西从发展到壮大都会经历一个过程,CPU能够发展到今天这个规模和成就,其中的发展史更是耐人寻味。作为电脑之“芯”的CPU 也不例外,本文让我们进入时间不长却风云激荡的CPU发展历程中去。在这个回顾的过程中,我们主要叙述了目前两大CPU巨头——Intel和AMD的产品 发展历程,对于其他的CPU公司,例如Cyrix和IDT等,因为其产品我们极少见到,篇幅所限我们就不再累述了。

三、踏入新世纪的CPU

进入新世纪以来,CPU进入了更高速发展的时代,以往可望而不可及的1Ghz大关被轻松突破了,在市场分布方面,仍然是Intel跟AMD公司在 两雄争霸,它们分别推出了Pentium4、Tualatin核心Pentium Ⅱ和Celeron、Tunderbird核心Athlon、AthlonXP和Duron等处理器,竞争日益激烈。

1、在Intel方面,在上个世纪末的2000年11月,Intel发布了旗下第四代的Pentium处理器,也就是我们天天都能接触到的 Pentium 4。Pentium 4没有沿用PIII的架构,而是用了全新的设计,包括等效于的400MHz前端总线(100 x 4), SSE2指令集,256K-512KB的二级缓存,全新的超管线技术及NetBurst架构,起步频率为1.3GHz。

第一个Pentium4核心为Willamette,全新的Socket 423插座,集成256KB的二级缓存,支持更为强大的SSE2指令集,多达20级的超标量流水线,搭配i850/i845系列芯片组,随后Intel陆 续推出了1.4GHz-2.0GHz的Willamette P4处理器,而后期的P4处理器均转到了针角更多的Socket 478插座。

和奔腾III一样,第一个Pentium4核心并不受到太多的好评,主要原因是新的CPU架构还不能受到程序软件的充分支持,因此 Pentium4经常大幅落后于同频的Athlon,甚至还如Intel自己的奔腾III。但在一年以后,Intel发布了第二个Pentium4核心, 代号为Northwood,改用了更为精细的0.13微米制程,集成了更大的512KB二级缓存,性能有了大幅的提高,加上Intel孜孜不倦的推广和主 板芯片厂家的支持,目前Pentium4已经成为最受欢迎的中高端处理器。

在低端CPU方面,Intel发布了第三代的Celeron核心,代号为Tualatin,这个核心也转用了0.13微米的工艺,与此同时二 级缓存的容量提高到256KB,外频也提高到100Mhz,目前Tualatin Celeron的主频有1.0、1.1、1.2、1.3Ghz等型号。Intel也推出了Tualatin核心的奔腾III,集成了更大的512KB二级 缓存,但它们只应用于服务器和笔记本电脑市场,在台式机市场很少能看到。

2、在AMD方面,在2000年中发布了第二个Athlon核心——Tunderbird,这个核心的Athlon有以下的改进,首先是制造工 艺改进为0.18微米,其次是安装界面改为了SocketA,这是一种类似于Socket370,但针脚数为462的安装接口。最后是二级缓存改为 256KB,但速度和CPU同步,与Coppermine核心的奔腾III一样。

Tunderbird核心的Athlon不但在性能上要稍微领先于奔腾III,而且其最高的主频也一直比奔腾III高,1Ghz频率的里程碑 就是由这款CPU首先达到的。不过随着Pentium4的发布,Tunderbird开始在频率上落后于对手,为此,AMD又发布了第三个Athlon核 心——Palomino,并且用了新的频率标称制度,从此Athlon型号上的数字并不代表实际频率,而是根据一个公式换算相当于竞争对手(也就是 Intel)产品性能的频率,名字也改为AthlonXP。例如AthlonXP1500+处理器实际频率并不是1.5Ghz,而是1.33GHz。最 后,AthlonXP还兼容Intel的SSE指令集,在专门为SSE指令集优化的软件中也能充分发挥性能。

在低端CPU方面,AMD推出了Duron CPU,它的基本架构和Athlon一样,只是二级缓存只有64KB。Duron从发布开始,就能远远抛离同样主攻低端市场的Celeron,而且价格更 低廉,一时间Duron成为低价DIY兼容机的第一选择,但Duron也有它致命的弱点,首先是继承了Athlon发热量大的特点,其次是它的核心非常脆弱,在安装CPU散热器时很容易损坏。

CPU故障排查

CPU是电脑中很重要的配件,可以视为一台电脑的心脏,它也是集成度很高的配件,可靠性较高,正常使用条件下故障率并不高。倡倘若安装或使用不当,或产品本身的质量不稳定,都可能带来很多意想不到的麻烦。

与CPU有关的故障是比较好判断的。CPU出现问题,一般都无法开机,系统没胡任何瓜,即按下电源开头后电源风扇不转,显示器无任何显示,机箱嗽叭无任何鸣叫声。如果出现上述现象,我们就应怀疑出现了与CPU有关的故障。CPU故障的处理思路如下:

1、CPU是否被 烧毁、压坏

道德我们应开机检查,取下风扇,拿出CPU然后用肉眼检查CPU是否有被烧毁、压坏的痕迹。现在彩封装的CPU核心(如P3铜矿、毒龙、雷鸟)十分娇嫩,在安装风扇时,稍不注意,便很容易被压坏。

CPU损坏还有一种现象,就是针脚折断,现在无论是毒龙/雷鸟还是P3/4,彩的都是Socket架构。CPU通过针脚直接插入主板上的CPU插槽,尽管号称是“零插拔力”插槽,但如果插槽质量不好,CPU插入时的阻力还是很大,大家在拆卸或者安装时应注意保持CPU的平衡,尤其安装前要注意检查针脚是否弯曲,不要一味地用蛮力压或拔,否则就有可能折断CPU针脚。

2、风扇运行是否正常

CPU运行是否正常与CPU风扇运行是否正常关系很大。风扇一昊出故障,则很平时使用时,我们不应忽视对CPU风扇的保养。比如在气温较低的情况下,风扇的润滑油容易失效,导致运行口音磊,甚至风扇坏掉,这时我们就应该将风扇拆下清理并如油。

3、CPU安装是否下确

清单检查CPU是否插入到位,尤其是对彩Slot1插槽的CPU(如P2及老P3),安装时容易示安装至位;现在的CPU都有定位措施,但有要检查CPU插座的固定杆是否固定到位。

4、、跳线、电压设置是否正确

尤其在用硬跳线的老主板上,稍不注意就可能将CPU的有关参数设置错误,因此在安装CPU前,我们应仔细阅读主板说明书,住址检查主板跳线是否正常并与CPU匹配。当然 现在大多数主板都能自动 识别CPU的类型,然后自动设置CPU的外频、倍主电压。如果发现在BIOS中识别的CPU电压等参数与标称什不一致,该产品就可能有问题。P2级的CPU可以通过屏蔽某相干引脚的方式来改变电压,而适当提高电压将有助于担高CPI的超频性能。

全球最重要三大电脑展之一:COMPUTEX 看点汇总

AM4。根据查询网易显示,5800x3d是AM4,AMD将带来Ryzen55600X3D,用3DVCache技术的6核12线程AM4处理器,AMD在CES2022大展上,推出了用3D垂直缓存技术的Zen3架构桌面处理器,为每个CCD带来额外的64MB7nmSRAM缓存,使得处理器的L3缓存容量由32MB增加到96MB,容量增加到原来的三倍。

CPU都是用什么材料做成的?

6 月 1 日至 6 月 5 日,一年一度的台北国际电脑展(COMPUTEX TAIPEI,以下简称 COMPUTEX)「如约」在台北举行。由于疫情的关系,本届 COMPUTEX 与 2020 年一样继续取了线上的形式。

COMPUTEX 的举办 历史 可以追溯到 1981 年,在 2004 年成为世界第二大国际电脑展,到目前为止已经成功举办了 39 届。COMPUTEX 与 CeBIT (已经停办)、COMDEX 是 全球最重要三大电脑展。作为全球 ICT(information and communications technology,包含电信业、软件和信息技术服务服务业、互联网行业)行业的重要盛会, COMPUTEX 见证了诸多「产业发展与转变的 历史 性时刻」,每年都吸引了大量的厂商参与,成为一个 ICT 行业的风向标。

本届 COMPUTEX 定位于「建构全球 科技 生态系」,共涵盖了六大主题:第五代移动通信(5G)、人工智能与物联网(AI & IoT)、边缘计算(Edge Computing)、创新与新创(Innovations & Startups)、电子竞技(Gaming)以及高性能计算(HPC)。

除了官方的在线展览之外,厂商也在其自身的网站上公布了与展会相关的信息。对于相关厂商感兴趣的读者,也可至相关厂商的网站浏览(Intel COMPUTEX 21、 AMD 中文 和 NVIDIA)。需要注意的是部分厂商的不同国家/地区的内容可能有所不同。

在本届展会上,不少厂商都展示了其实力之作。在这篇文章中,我们为你收集了国内外的最新情报,带你再次回顾展会上出现的新东西。

在本次 COMPUTEX 上, Intel 在移动平台上发力颇多,推出的产品也有不少亮点。

在本届 COMPUTEX 上,英特尔发布了两款高端 CPU 。这两款 CPU 都是基于 Tiger Lake平台、适用于移动平台的低电压版本。它们同是基于11代酷睿的 Core i5-1155G7 和 Core i7-1195G7。前者可以睿频至 4.5GHz ,而后者更是可以睿频到 5.0GHz ,这也是首款可以睿频至 5.0GHz 低功耗芯片。两款芯片的功耗都在 12W 到 28W 之间。在具体的配置上,二者都是四个核心、八个线程配置,同时集成英特尔 Iris Xe 显卡。

在 演示 中,Intel 展示了 Core i7-1195G7 与 AMD 的 Ryzen 7 5800U 在 Adobe Pr Pro 2021 环境下回放所呈现出来的性能对比。演示最终的结果是,Intel 99%的帧都能够播放,AMD 则出现了 99% 的丢帧问题。

关于 5G,Intel 可谓一言难尽。早在 2017 年, Intel 就发布了其首款 5G 基带 XMM8060 。然而在 2019 年,Intel 将智能手机基带的绝大部分业务作价 10 亿美元卖给了苹果。

对 5G 念念不忘的 Intel 在本届 COMPUTEX 上,再次推出了 5G 方案。这一次,它选择的是与联发科合作开发。新的 M.2 卡调制解调器称为 Intel 5G Solution 5000,集成集成eSIM,覆盖全球。5G Solution 5000的系统协议走PCIe 3.0。在 Tiger Lake 、Alder Lake 等新推出的笔记本中,也将包含 Intel 的该方案。详细参数参见 Intel 5G Solution 5000 官方简介文档。

但凡有 Intel 的地方总是少不了 AMD 的身影。这一届展会也毫不例外。关于 CPU,苏妈(AMD 总裁兼首席执行官苏姿丰博士)在本届大会上 揭晓 了 AMD 全新的 3D chiplet 技术、面向发烧级和消费 PC 的全新 AMD 锐龙处理器以及第三代 AMD EPYC 处理器。

3D chiplet 是一项超灵活的活性硅堆叠技术。同时作为一项封装技术,3D chiplet 将芯片架构与 3D 堆叠技术相结合,用业界领先的混合键合方法,可提供超过 2D 芯片 200 倍的互连密度;与现有的 3D 封装解决方案相比,其密度可达 15 倍以上;与目前其他的 3D 解决方案相比,能耗更低。

通过苏妈的讲解,我们可以了解到该技术的原理。3D Chiplet 将一个 64MB 的 7nm 的 SRAM 直接堆叠在每个核心复合体之上,使得供给 Zen 3 核心的高速 L3 缓存的数量增加到 3 倍。3D 缓存直接与Zen3 的 CCD 相结合,通过硅通孔在堆叠的芯片之间传递信号和功率,支持每秒超过 2TB 的带宽。

在演讲中, 苏妈展示了 3D 芯片技术的首个应用——与 AMD 锐龙 5900X 处理器结合的 3D 垂直缓存原型。

演示中的原型 Ryzen 9 5900x 与普通的 Ryzen 9 5900x 外观完全一样。拆掉了盖子之后,能够看到原型 CPU 中间有一个 6 毫米乘 6 毫米的正方形 SRAM 与 CCD 混合结合在一起。实际结构中,这将是一个单独的 SRAM 与每一块 CCD 结合。每一块 CCD 可获得 96MB 的缓存,单个封装中的 12 核或 16 核的锐龙处理器,总共可获得 192MB 的缓存。

苏妈在演讲时通过两款 CPU 在运行《战争机器5》时的表现作比,展示使用了 3D chiplet 技术的性能提升情况,并形容如此高性能的提升本应是一个 CPU 的代际提升,而现在 3D 垂直缓存技术便可以一步到位。与相同核心数、线程数的 Ryzen 9 5900x 相比,稳定的处在 4.0GHz 时钟频率之上,用了3D chiplet 技术的 Ryzen 9 5900x 原型 CPU 的性能平均要高出 12% 。运行主流 游戏 时,在 1080p 分辨率下,用了 3D chiplet 技术的性能平均提高了 15% 。

依苏妈所说,AMD 在今年年底前开始在高端计算产品的生产中用 3D chiplet 技术。

在前文中提到, AMD 发布了面向发烧级和消费的全新 AMD 锐龙处理器。主要规格如下:

AMD 锐龙 5000G 系列台式机 APU 包括了 Ryzen 5 5600G 和 Ryzen 7 5700G,他们均基于最新的 Zen 3 架构,且 TDP 额定值也均为 65 W。其中锐龙 R5 5600G 主频为 3.9GHz,6 核 12 线程 ,可加速至 4.40 GHz ;而锐龙 R7 5700G 主频为 3.8GHz,8 核 16 线程 ,最高可加速至 4.6GHz 。AMD 称 5700G 在各种内容创建和一般 游戏 中的表现优于英特尔 i7-11700 。

AMD 还发布了基于 Zen 3 的锐龙 PRO 5000 系列台式机处理器。5350G 主频为 4Ghz,4 核 8 线程, 可加速至 4.2Ghz;5650G 主频为 3.9Ghz,6 核 12 线程, 可加速至 4.4Ghz;5750G 主频为 3.8Ghz,8 核 16 线程, 可加速至 4.6Ghz。以上处理器 TDP 功耗均为 65W,且都有相对应的 35W 低功耗版本。

除了面向发烧级和消费 PC 的锐龙之外, AMD 也展示了面向企业用户的 第三代 AMD EPYC处理器。与上一代处理器相比, AMD 的可用解决方案数量增加了一倍以上,包括用于超融合基础设施、数据管理、数据分析和 HPC 的优秀解决方案。

2019 年, AMD 在 E3 大会上首次发布了 RDNA 架构,旨在引领新一代高性能 游戏 体验、让 游戏 更逼真。在 RDNA 的基础之上, AMD 的技术不断迭代,目前已经发展至 RDNA 2 架构。根据 AMD 官方的披露,经过全新设计的 RDNA 2 架构具有具有卓越的性能和能效,「与上一代的 RDNA 相比,性能功耗比提升最高可达 54%」。

作为 AMD 在 RDNA 2 上发力的另一面, AMD 基于该架构发布了 针对下一代高端 游戏 笔记本电脑 Radeon 6000M 系列移动显卡。 基于 RDNA 2 架构的 Radeon 6000M系列显卡 ,能够实现比 RDNA 架构高达 1.5 倍的 游戏 性能。

Radeon 6000M 系列显卡 系列一共包括 包括 Radeon RX 6800M、RX 6700M、RX 6600M 。 其中,RX 6800M 更是配备了 2300MHz 的 游戏 时钟频率和高达 12GB 的 GDDR6 显存。

与之对应的,此番 AMD 推出的 Radeon RX 6000 系列显卡所对标的是 NVIDIA 面向移动平台的 RTX 30 系列 GPU。

在 AMD 的演讲中, AMD 图形事业部总经理 Scott Herkelman 提到了一项新技术 FidelityFX Super Resdlution(简称 FSR)超级分辨率技术。实际上,该技术对标的是 NVIDIA DLSS 。

根据介绍,FSR 已经支持了超过 100 款的 AMD 处理器和显卡型号,而且超过 10 家 游戏 开发商在2021年将 FSR 整合到他们的 游戏 及引擎中。而另外一个有意思的点就是 AMD 的 FSR 竟然也支持友商的 GPU。AMD Yes!

Scott Herkelman 同时提到 FidelityFX 套件已经提供在 GPUOpen,将免费提供给全行业使用。

除了 FSR 之外, AMD 还公布了 AMD Advantage 设计框架,「旨在打造次世代优质、高性能的 游戏 笔记本」。该系统将 AMD Radeon RX 6000M 系列移动显卡、 AMD Radeon 软件和 AMD Ryzen 5000 系列移动处理器与 AMD 独有的智能技术和其他的系统设计特点相结合。预计首批 AMD Advantage 笔记本将在 6 月份上市。

在 AMD 之后,我们一起来看一下 GPU 领域的另一位大佬 NVIDIA 。在今年的 COMPUTEX 上, NVIDIA 也展示了不少好东西。

在本届展会上, NVIDIA 发布了两款 GeForce RTX 30 系列的 GPU ,分别是性能更强大、当然也更贵的 RTX3080 Ti (空气) 和稍微便宜一点的版本 RTX3070 Ti (空气) 。二者均用了 NVIDIA 第二代 RTX 架构的 Ampere GPU 。RTX3080 Ti 配备 0 个 CUDA 核心和 12GB 显存,而 RTX3070 Ti 则配备 6144 个 CUDA 核心和 8GB 显存。

作为 NVIDIA 最新的旗舰级 游戏 显卡, GeForce RTX 3080 Ti 游戏 运行(传统光栅化)的速度是 GeForce GTX 1080 Ti 的 2 倍,是 GeForce RTX 2080 Ti (4K) 的 1.5 倍;在光线追踪 游戏 中,性能提升 1.5 倍。在 Blender、V-Ray 和其他应用程序中进行渲染时,性能比上一代产品提升 2 倍。

GeForce RTX 3070 Ti 速度比上一代 GeForce RTX 2070 SUPER 提高 1.5 倍。比 GeForce GTX 1070 Ti 提升 2 倍。

无论是 RTX 3080 Ti 还是 RTX 3070 Ti 都将支持 G-SYNC、NVIDIA Reflex 和 NVIDIA Broadcast 在内的所有 Nvidia 最新技术。

根据参考价格, GeForce RTX 3080 Ti 起售价为 8999,目前京东已经发售与之相关的 GeForce 新品; GeForce RTX 3070 Ti 将于 6 月 10 日推出,起始售价为 4499。当然能不能买得到就是另外一回事了。

至于二者与RTX 30 系列其他的 GPU 的对比可参见下表,更多内容参见 NVIDIA GeForce RTX 30 系列 GPU。

其实对于另一部分人来讲, NVIDIA 的显卡是「致富的得力工具」。所以官方特意进行了 强调:

除了两款全新的 游戏 GPU , NVIDIA GeForce 高级副总裁 Fisher 也谈到 NVIDIA RTX 技术 在越来越多的 游戏 中被迅速的用。

RTX 已成为新的标准, NVIDIA DLSS、Reflex 和光线追踪技术提升了许多 游戏 项目的画质和性能。

根据 Fisher 的演讲可知,目前有130多个顶级 游戏 和创意应用支持了 NVIDIA GPU 加速。而今年 RTX 笔记本电脑发布数量创下了 历史 纪录,OEM制造商发布了超过140款产品。不久之后,排名前 15 的竞技射击类 游戏 中,将有12款使用 NVIDIA Reflex。

目前,目前 NVIDIA 围绕着 NVIDIA Reflex 已经形成了一个由 游戏 、合作伙伴、G-SYNC 显示器和鼠标等构成的生态。 游戏 玩家可以通过支持的 G-SYNC 游戏 显示器和支持 NVIDIA Reflex 的鼠标,以及 GeForce Experience 软件,即可轻松测量出测量从单击到显示的整体 系统延迟,为竞技 游戏 做好充分的准备。

在演讲中, Fisher 更进一步的提到了适用于 游戏 玩家和创作者的 GeForce RTX 30 系列笔记本电脑。

在 COMPUTEX 2021 上,NVIDIA 的合作伙伴 Alienware 和宏碁都推出了用 Max-Q 技术的新版创新型 游戏 笔记本电脑,分别是 Alienware x15 和宏碁的新款 16 英寸 Predator Triton 500 SE。

对于 3D 设计师、剪辑师、摄影师和其他相关人员而言,往往需要特别的配置和进行系统优化。 NVIDIA 针对这一部分群体则是推出了 NVIDIA Studio 笔记本电脑。目前 NVIDIA 提到的两款笔记本包括了:14英寸的惠普 Envy 和宏碁 ConceptD 系列。

相关的电脑产品在下文中提及。

在本届 COMPUTEX 上,惠普的参展或者被提到的产品主要有几款:定位于桌面端的 Elite 和定位 Pro 的 HP EliteDesk 805 G8 系列和 HP ProDesk 405 G8系列;HP Envy 14/15英寸笔记本;搭载 AMD Advantage 架构的 OMEN 16 笔记本。

惠普的 Elite 和定位 Pro 的这几款产品都用 Windows 10 Pro 系统和 AMD Ryzen PRO 5000 台式机处理器,他们都将于今年 8 月上市。 惠普称之为世界上最小、功能最强大的且基于 AMD 处理器的超小型企业级 PC 端设备。

HP Elite Desk 805 G8 系列包括两款机型 Desktop Mini PC 和 Small Form Factor PC 。HP Elite Desk 805 G8 系列电脑配备两个托架、两个半高插槽、三个 M.2 插槽和 11 个 USB 端口,而 Desktop Mini PC 则可以安装在显示器后面。前者最大可支持 64GB 内存,而后者最大可支持 128GB 内存;在显卡上,HP Elite Desk 805 G8 可选配 GTX 1660 Ti ,支持最多 7 个显示器,Desktop Mini PC 可选 Quadro P400 显卡,支持最多 6 个显示器。

截止本文撰写时,HP ProDesk 405 G8 系列尚未出现在在惠普的中。

作为搭载 AMD Advantage 架构的 OMEN 16 笔记本出现在了 AMD 的演讲当中。不过在惠普的上,OMEN16 目前还是 Intel 和 AMD 标准版两个版本可选,显卡也可以在 AMD Radeon RX 6600M 和 RTX30 系列之间进行选择。

在 NVIDIA 的演讲之中,提到了两款 Alienware 笔记本,分别是 Alienware x15 和 Alienware x17,是全球顶级的轻薄 游戏 本。

Alienware x15 使用了支持 Max-Q 技术的 NVIDIA 3080,包括 Dynamic Boost 2.0、WhisperMode 2.0 和Advanced Optimus 在内的一系列技术;处理器方面则使用了 Intel i9-11900H 处理器,它还配备了 2560x1440 G-SYNC 显示器和高达 32G 的内存。但其最终的厚度还不到 16 毫米,可以说的是是全球顶级的轻薄 游戏 本了。在 NVIDIA 的演讲中, Fisher 称 Alienware x15 为「世界上性能最为强大的 、16 毫米以下的、 15 英寸 游戏 笔记本」(It is the world's most powerful sub-16mm 15-inch gaming laptop)。

除了 Alienware x15 之外,本次 Alienware 还有一款笔记本就是 Alienware x17。二者参数的不同点可以参见下表。

在相关的发布会中,宏碁被「点名」的产品主要有这样几款:新款 16 英寸 Predator Triton 500 SE、宏碁 ConceptD 系列。

宏碁的新款 16 英寸 Predator Triton 500 SE 配备 GeForce RTX 3080 笔记本电脑 GPU ,并装载了第三代 Max-Q 技术,可实现出色运行和性能。

Predator Triton 500 SE 用全金属机身打造。搭载 Intel 第 11 代 Core i9 处理器,RTX 3080 显卡,内存最高可支持至 64 GB。屏幕可选配 240Hz 刷新率的 PolarBlack 屏,该屏幕拥有100% DCI-P3 色域,支持 NVIDIA G-SYNC 技术。

Predator Triton 500 SE 内置 Acer Vortex Flow 散热技术,用三颗风扇散热,包含一个特制的第五代 AeroBlade 3D 风扇和五热管散热系统,能更有效地降低笔记本的温度。

作为 NVIDIA Studio 笔记本电脑,宏碁 ConceptD 系列主要面对的是创作者群体。宏碁 ConceptD 系列既有传统的翻盖选项,也有 Ezel 草图板设计,能够为创作者提供更大的灵活性。整体上来看,宏碁 ConceptD 系列 GPU 的选择面还是比较大。从低端的搭载 GeForce RTX 3050 或 3050 Ti 笔记本电脑 GPU 的 ConceptD 3,到高端的搭载 GeForce RTX 3080 笔记本电脑 GPU 的 ConceptD 7 以及 ConceptD 7 Pro。针对专业人士还有 NVIDIA RTX A5000 笔记本电脑 GPU 可选。具体的情况可至宏碁了解。

在 AMD 公布 AMD Advantage 架构的时候, AMD 提到了 ROG G15 和 ROG 17 两款笔记本。作为 AMD Advantage 版本,两款笔记本都搭载了 AMD 基于 RDNA 2 架构的 Radeon RX 6000M系列的 GPU 和 AMD Ryzen 9 5900HX CPU,内存都可升级至 32GB。考虑到 CPU 、GPU 都来自于 AMD ,还有 AMD 官方的背书,这两款笔记本的具体表现应该会有 1+1>2 的效果。

当然,还一个不好的消息 Intel 认为全球芯片荒的问题将会将会延续几年。在 COMPUTEX 期间,英特尔 CEO Pat Gelsinger 发表了与之相关的 讲话。当然这也不是英特尔第一强调芯片荒的问题,因为疫情导致的生产设施关停,远程学习和工作引发的电子设备需求量的暴增,这些因素叠加传导至整个半导体行业,给全球的供应链带来巨大的压力。尽管相关行业在努力,但是并不是一朝一夕就能解决这些问题的。

目前 AMD 新一代电脑 游戏 显卡、PlayStation 5 和 Xbox Series S|X 游戏 主机均基于 AMD RDNA 2 架构打造。

在前述的基础之上, AMD 继续在 RDNA 2 上发力,将 AMD RDNA 2 游戏 架构引入新市场。

在将 AMD RDNA 2 游戏 架构引入新市场方面,主要包括两方面:一个是 AMD 与互联网车企特斯拉的合作,另一个是 AMD 与手机厂商三星之间的合作。通过这种跨行业的深度合作, AMD 希望为 汽车 和移动市场带来全新的 游戏 体验。

在 AMD 的 Keynotes 中,苏妈介绍,特斯拉今年发布的新款 Model S|X 用了 AMD 嵌入式 APU 与 RDNA 2 独显的组合用以驱动信息 系统。特斯拉的这两款车型搭载的 RDNA 2 显卡可以提供高达 10 万亿次计算能力,支持 3A 游戏 ,俨然一个 mini 版的 PS5 。

在移动市场, AMD 正在与三星进行合作,开发下一代 Exynos SoC 。该款 Exynos SoC 将用定制版的 AMD RDNA 2 架构图形 IP,定位是旗舰手机端 SOC 。届时将为手机带来光线追踪和可变速率着色(VRS)功能。

人工智能是本届 COMPUTEX 的主题之一,同时人工智能也是 NVIDIA 出席此次 COMPUTEX 的重点之一。相关的内容大致可以归纳为 Enterprise AI 和 Cloud AI 两部分。

在 Enterprise AI 方面, Das 宣布已有数十台新服务器获得认证,可运行 NVIDIA AI Enterprise 软件。这当中包括一些主流数据中心使用的主流 x86 服务器,其中包括华硕、戴尔技术、联想等十几个硬件厂商 NVIDIA 还将把 NVIDIA 认证系统扩展至用 NVIDIA BlueField DPU 的系统。 Das 表示:「今后,DPU 将成为所有服务器、数据中心和边缘的一个重要组成部分。」

除了X86服务器之外, NVIDIA 认证系统将扩展至配备 ARM 处理器的服务器。 NVIDIA 还将和技嘉一起发布了一个开发者套件,以供应用开发者开发用于 ARM 的 GPU 加速应用。

除了 Enterprise AI 之外, NVIDIA 还推出了 NVIDIA Base Command Platform(BCP)。通过 BCP ,研究人员和数据科学家能够基于 GPU 加速计算展开协同工作,而这将有助于企业最大程度地提升生产力。Manuvir Das 透露,谷歌云将是首批在云实例中启用 BCP 的云服务提供商之一。

电脑cpu芯片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄圆形片,叫“晶圆片”。CPU是在特别纯净的硅材料上制造的。一个CPU芯片包含上百万个精巧的晶体管。人们在一块指甲盖大小的硅片上,用化学的方法蚀刻或光刻出晶体管。

CPU正是由晶体管组合而成的。简单而言,晶体管就是微型电子开关,它们是构建CPU的基石,你可以把一个晶体管当作一个电灯开关,它们有个操作位,分别代表两种状态:ON(开)和OFF(关)。这一开一关就相当于晶体管的连通与断开。