欧米汽车资讯网

您现在的位置是: 首页 > 汽车动态

文章内容

溶菌酶配制triton_溶菌酶配制方法

ysladmin 2024-06-03
溶菌酶配制triton_溶菌酶配制方法_溶菌酶配制方法       我很了解溶菌酶配制triton这个话题,并且可以为您提供一系列的信息和建议。请告诉我您需要了解什么。1.质粒提取的主要步骤是什么及其作用2.分光光度法测定溶菌酶
溶菌酶配制triton_溶菌酶配制方法 _溶菌酶配制方法

       我很了解溶菌酶配制triton这个话题,并且可以为您提供一系列的信息和建议。请告诉我您需要了解什么。

1.质粒提取的主要步骤是什么及其作用

2.分光光度法测定溶菌酶注意事项有哪些?

3.怎样配制 考马斯亮蓝G250蛋白染色剂

4.bradford法测定蛋白质含量的原理是什么?应如何克服不利因素对测定的影响

5.常见DNA提取纯化技术—讲座笔记

6.包涵体染色的方法有哪些?原理是什么

溶菌酶配制triton_溶菌酶配制方法

质粒提取的主要步骤是什么及其作用

       从细菌中分离质粒DNA的方法都包括3个基本步骤:培养细菌使质粒扩增;收集和裂解细胞;分离和纯化质粒DNA。采用强碱液、加热或溶菌酶(主要针对革兰氏阳性细菌)可以破坏菌体细胞壁,十二烷基磺酸钠(SDS)和TritonX-100(一般很少使用)可使细胞膜裂解。经溶菌酶和SDS或Triton X-100处理后,细菌染色体DNA会缠绕附着在细胞碎片上,同时由于细菌染色体DNA比质粒大得多,易受机械力和核酸酶等的作用而被切断成不同大小的线性片段。当用强热或酸、碱处理时,细菌的线性染色体DNA变性,而共价闭合环状DNA(Covalently closed circularDNA,简称cccDNA)的两条链不会相互分开,当外界条件恢复正常时,线状染色体DNA片段难以复性,而是与变性的蛋白质和细胞碎片缠绕在一起,而质粒DNA双链又恢复原状,重新形成天然的超螺旋分子,并以溶解状态存在于液相中。在细菌细胞内,共价闭环质粒以超螺旋形式存在。在提取质粒过程中,除了超螺旋DNA外,还会产生其它形式的质粒DNA。如果质粒DNA两条链中有一条链发生一处或多处断裂,分子就能旋转而消除链的张力,形成松弛型的环状分子,称开环DNA(Open circularDNA,简称ocDNA);如果质粒DNA的两条链在同一处断裂,则形成线状DNA(LinearDNA)。当提取的质粒DNA电泳时,同一质粒DNA其超螺旋形式的泳动速度要比开环和线状分子的泳动速度快。

分光光度法测定溶菌酶注意事项有哪些?

       目录 1 拼音 2 英文参考 3 概述 4 溶菌酶药品说明书 4.1 溶菌酶的别名 4.2 外文名 4.3 适应症 4.4 用量用法 4.5 规格 5 溶菌酶医学检查 5.1 英文名 5.2 分类 5.3 取材 5.4 原理 5.5 试剂 5.6 操作方法 5.7 正常值 5.8 临床意义 5.9 附注 5.10 相关疾病 附: * 溶菌酶相关药品说明书其它版本 1 拼音

        róng jūn méi

2 英文参考

        lysozyme

3 概述

        溶菌酶是一种低分子量(14700道尔顿)的、不耐热的堿性蛋白质,其中富含精氨酸。溶菌酶为正常机体免疫防御机制的组成部分。因具有溶解细菌细胞壁的作用而得名,是能溶解某些细菌的一种糖水解酶。溶菌酶主要存在于动植物的组织液和某些微生物体内,如鼻粘液、眼泪、唾液、卵蛋白、枯草杆菌培养物和某些蔬菜中。该酶能水解细菌的细胞壁中N乙酰氨基葡萄糖和N乙酰胞壁酸之间的β1,4糖苷键,故又称胞壁质酶,即N乙酰胞壁质糖苷聚糖水解酶。现从鸡蛋清提取溶菌酶以及从霉菌中提取溶菌酶均已达工业化生产水平。对鸡蛋清溶菌酶的研究较详细,它是由129个氨基酸残基构成的一种堿性蛋白,分子量从1.5~1.8万,对热稳定,对堿不稳定,对革兰氏阳性细菌有较强的杀菌作用。

        在人体内,溶菌酶存在于中性粒细胞、单核细胞和巨噬细胞内;也存在于黏膜分泌液中,成为体表防御因素之一。体内多数器官含有一定浓度的溶菌酶。以乳汁、唾液、肠道以及吞噬细胞溶酶体颗粒中含量较多,组织中含量较少。正但肾脏和脾脏的含量较多。单核细胞与巨噬细胞的溶菌酶位于细胞表面,故其释放活跃。而中性粒细胞的溶菌酶位于胞质深层,只在细胞裂解时才释放出来。正常的尿液、汗液及脑脊液中不含溶菌酶。某些疾病患者血清或体液内的溶菌酶活性值有显著差别,故测定溶菌酶活性日益受到临床重视。

        溶菌酶能直接水解革兰氏阳性菌细胞壁中乙酰葡糖胺与乙酰胞壁酸分子间的连接,使细胞壁破坏,水分进入,细胞崩解。而革兰氏阴性菌细胞壁粘肽层外有一层脂多糖和脂蛋白,故不受溶菌酶的影响。在抗体存在下,脂多糖及脂蛋白受到破坏时,溶菌酶才能发挥作用;在有抗体、补体、溶菌酶共同存在时,其溶菌作用更为明显。

       

        溶菌酶也存在于鸡蛋清和某些细菌中,可用工业生产的方法将其提纯并加工制成各种制剂,用来治疗中耳炎、咽喉炎、副鼻窦炎等慢性疾病。

        溶菌酶可药用,具抗菌、清除局部坏死组织、止血、消肿、消炎等作用。在食品工业上可用作防腐剂,还可添加在牙膏中作为防治龋齿的药用牙膏。在发酵工业上是一种重要的溶菌剂,用于存作细胞壁,制备无菌体提取液。

4 溶菌酶药品说明书 4.1 溶菌酶的别名

        球蛋白G ,溶菌酶

4.2 外文名

        Lysozyme,Globulin G

4.3 适应症

        有抗菌、抗病毒、止血、消肿及加快组织恢复功能等作用,故临床用于慢性鼻炎、急慢性咽喉炎、口腔溃疡、水痘、带状疱疹和扁平疣等。

4.4 用量用法

        口服:每次3~5片(肠溶片),1日3次。口含:每次1片,1日4~6次。外用:用等渗盐水或注射用水或甘油配成1%~2%溶液外搽。治水痘时,每日每千克体重10mg,分3~4次服。

4.5 规格

        片剂(肠溶片):每片10mg。口含片:每片20mg。

5 溶菌酶医学检查

        正常人尿中无溶菌酶。某些疾病患者血清或体液内的溶菌酶活性值有显著差别,故测定溶菌酶活性日益受到临床重视。常用的方法有琼脂平板法、比浊法。

5.1 英文名

        Lysozyme

5.2 分类

        血液生化检查 > 酶类测定

5.3 取材

        血液

5.4 原理

        (1)琼脂平板法:根据溶菌酶能使革兰阳性菌细胞壁溶解,尤以对腐生菌。如溶壁微球菌(M.lysodeikticus)最为敏感,故常以溶解溶壁微球菌为指标,可对溶菌酶的活性进行测定。溶壁微球菌与琼脂混合,被检物(含溶菌酶)与该菌作用后,细菌因细胞壁破坏而溶解。致使加样孔周围出现溶菌环。溶菌环直径与样品中溶菌酶含量的对数成直线关系。

        (2)比浊测定法:一定浓度的混浊细菌溶液中,由于溶菌酶水解细菌细胞壁黏多肽使细菌裂解,浓度降低,透明度增强,根据浊度变化来推测溶菌酶的含量。

5.5 试剂

        同琼脂平板法和比浊法测定。

5.6 操作方法

        同琼脂平板法和比浊法测定。

5.7 正常值

        血清:5~30mg/L(琼脂平板法);9.6~14mg/L(比浊测定法)。脑脊液:0mg/L(琼脂平板法)。唾液:30~70mg/L(比浊测定法)。尿液:0mg/L(琼脂平板法);1~3mg/L(比浊测定法)。

        由于方法与实验条件不同,测定结果有所差别,故各实验室应建立自己的正常值标准。

5.8 临床意义

        血清溶菌酶测定对鉴别各型急性白血病有一定意义,急粒与急单血清溶菌酶升高;而急淋、急性红白血病降低或正常;经化疗奏效病情缓解后,溶菌酶水平可恢复。血清溶菌酶测定可作为判断局限性肠炎活动性的一个有用的指标,并且有助于判断临床过程的严重程度和对治疗的反应。

        尿液溶菌酶含量增高的原因有:①肾小管损害;②高溶菌酶血症;③肾组织破坏。临床上测定尿液溶菌酶主要是作为肾小管损害的一个指标,各种原因的肾小管损害都可引起尿溶菌酶含量增高。肾移植患者定期检查尿溶菌酶活性十分必要。如移植肾接受良好,则溶菌酶活性在7天内恢复正常;若尿中过多的溶菌酶持续存在,必须疑及排斥反应的发生。

        细菌性脑膜炎患者脑脊液(CSF)溶菌酶含量远较病毒性脑膜炎患者的含量高。因此,用溶菌酶测定对二者的鉴别有重要意义。此外。CSF溶菌酶测定对中枢神经系统的原发性或继发性肿瘤有一定辅助诊断价值。

        慢性支气管炎患者痰液中溶菌酶含量降低;重症肺结核、泌尿系统感染患者血清或尿液中溶菌酶活性均可显著升高。此外,溶菌酶含量测定亦可作为判断局限性肠炎活动性指标。并有助于对临床过程的严重程度和治疗反应进行评价。

5.9 附注

        有关标本保存期限、溶菌酶标准液的保存时间,文献资料众说不一。一般地说,标本应新鲜,溶菌酶标准液应在临用时准确配制,测定检样中溶菌酶活性。目前已有用抗人溶菌酶抗体建立的溶菌酶免疫测定法。由测酶活性改为测酶含量,初步认为此法具有特异、灵敏、准确等优点。

5.10 相关疾病

怎样配制 考马斯亮蓝G250蛋白染色剂

       标准曲线的绘制、样品的处理。

       1、标准曲线的绘制:标准曲线是分光光度法测定溶菌酶的基础,需要准确绘制,在绘制标准曲线时,需要选择合适的溶菌酶标准品,并按照一定的浓度梯度进行配制,同时需要注意标准品的稳定性和准确性,以确保测定结果的可靠性。

       2、样品的处理:分光光度法在测定溶菌酶之前,需要对样品进行适当的处理,以去除其中的杂质和干扰物质。常用的处理方法包括离心、过滤、透析等。

bradford法测定蛋白质含量的原理是什么?应如何克服不利因素对测定的影响

       考马斯亮蓝G-250的配制:

       1.称取100 mg考马斯亮蓝G-250,溶于50 mL 90%乙醇中,

       2.加入85%的磷酸100 mL,

       3.最后用蒸馏水定容到1 000 mL。

       此溶液在常温下可放置一个月。

扩展资料

       考马斯亮蓝有G250和R250两种。其中考马斯亮蓝G250由于与蛋白质的结合反应十分迅速,常用来作为蛋白质含量的测定。考马斯亮蓝R250与蛋白质反应虽然比较缓慢,但是可以被洗脱下去,所以可以用来对电泳条带染色。

       考马斯亮蓝法测定蛋白质含量流程:

       该方法用于大多数蛋白质的定量是比较精确的,但不适用于小分子碱性多肽的定量。如核糖核酸酶或溶菌酶。去污剂的浓度超过0.2%影响测定结果。如TritonX-100、SDS、NP-40等。

       1.Bradford浓染液的配制:将100mg考马斯亮蓝G-250溶于50ml 95%乙醇,加入100ml85%的磷酸,然后,用蒸馏水补充至200ml,此染液放4℃至少6个月保持稳定。

       2.标准曲线蛋白质样本的准备:尽量使用与待测样本性质相近的蛋白质作为标准品,例如测定抗体,可用纯化的抗体作为标准。如果待测样本是未知的,也可用抗体作为标准蛋白。通常在20ug—150ug/100ul之间绘制标准曲线。

       3.将待测样本溶于缓冲溶液中,该缓冲溶液应与制作标准曲线的缓冲溶液相同(最好用PBS)。

       4.按1:4用蒸馏水稀释浓染料结合溶液,如出现沉淀,过滤除去。

       5.每个样本加5ml稀释的染料结合溶液,作用5~30min。染液与蛋白质结合后,将由红色变为蓝色,在595nm波长下测定其吸光度。注意,显色反应不得超过30min.

       6.根据标准曲线计算待测样本的浓度。

       

参考资料:

百度百科-考马斯亮蓝法

       

常见DNA提取纯化技术—讲座笔记

       采用Bradford法,即考马斯亮蓝法测定蛋白质的含量。原理是考马斯亮蓝在电离状态下呈现棕红色,最大吸光量为488nm。当与蛋白质结合时,它变成蓝色,并且蛋白质与色素结合时在波长595nm处吸收光最大。其吸光值与蛋白质含量成正比,可用于蛋白质的定量测定。

       蛋白与考马斯亮蓝在2min左右达到平衡,反应非常迅速。粘结剂在室温下保持稳定1h。该方法制备的试剂简单,操作方便,反应灵敏度高。灵敏度比Lowry法高4倍,可测定微克水平的蛋白质含量。主要的不利因素是特殊蛋白的结构和缓冲液中的干扰剂。

扩展资料:

       考马斯亮蓝法测定蛋白质含量流程:

       1、Bradford浓染液的配制:将100mg考马斯亮蓝G-250溶于50ml 95%乙醇,加入100ml85%的磷酸,然后,用蒸馏水补充至200ml,此染液放4℃至少6个月保持稳定。

       2、标准曲线蛋白质样本的准备:尽量使用与待测样本性质相近的蛋白质作为标准品,例如测定抗体,可用纯化的抗体作为标准。如果待测样本是未知的,也可用抗体作为标准蛋白。通常在20ug—150ug/100ul之间绘制标准曲线。

       3、将待测样本溶于缓冲溶液中,该缓冲溶液应与制作标准曲线的缓冲溶液相同(最好用PBS)。

       4、按1:4用蒸馏水稀释浓染料结合溶液,如出现沉淀,过滤除去。

       5、每个样本加5ml稀释的染料结合溶液,作用5~30min。染液与蛋白质结合后,将由红色变为蓝色,在595nm波长下测定其吸光度。注意,显色反应不得超过30min.

       6、根据标准曲线计算待测样本的浓度。

       注意:该方法用于大多数蛋白质的定量是比较精确的,但不适用于小分子碱性多肽的定量。如核糖核酸酶或溶菌酶。去污剂的浓度超过0.2%影响测定结果。如TritonX-100、SDS、NP-40等。

       百度百科-考马斯亮蓝法

包涵体染色的方法有哪些?原理是什么

       不同的下游实验对于DNA结构的完整性有所区别。

        如PCR、Southern杂交这一类实验基本保证所需片段的完整,而二代测序实验为了获得全面的序列信息对DNA的完整性要求更高。

        去除对下游实验中酶分子有抑制作用的有机溶剂和高浓度金属离子

        将蛋白质、多糖、多酚等生物大分子的污染降到最低

        去除其他核酸(如RNA对后续实验的影响)

        血液、动物组织、培养细胞、鼠尾等

        特点:细胞数量较多、样本成分相对单一

        血清、血浆、鼻咽拭子、痰液、支气管/肺泡灌洗液、腹水、病毒、粪便、FFPE样本等

        特点:细胞数量少、样本成分复杂

        普通植物:拟南芥、小麦、玉米、水稻等

        特点:存在细胞壁这样的保护结构、细胞内部还有液泡、叶绿体等细胞器成分相对复杂

        多糖多酚类植物:水果果肉、植物种子等

        特点:多糖与核酸理化性质一致、多酚氧化后易于核酸结合,影响DNA的提取

        细菌:革兰氏阳性菌(金**葡萄球菌等)、革兰氏阴性菌(大肠杆菌等)

        特点:有细胞壁,有的细菌还有鞭毛和荚膜

        真菌:酵母、真菌菌丝等

        特点:存在以多糖为主要成分的细胞壁、细胞内部成分相对复杂

        新鲜样本中受到内源性核酸酶影响相对最小,得到DNA质量相对更好。

        投入过多样本,后续样本裂解不充分从而影响DNA提取情况,还会引入过多杂质及内源性核酸酶。

        对于含有多糖多酚等次生代谢产物的衰老叶片可在4℃黑暗环境下饥饿1-2天;进行低温或冷冻保存可以避免内源性DNA酶对样本中的DNA进行一个降解。

        -20℃短期保存(1-3个月),-70℃长期保存;福尔马林固定时间8-24h内为宜,样本存放时间不宜超过1年;FFPE样本保存温度4℃,建议不超过3年。

        长时间使用福尔马林进行固定,里面有效成分甲醛会引起生物大分子之间形成广泛的亚甲基交联桥使DNA分子脆性增加,在剪切力的作用下,DNA分子容易断裂,同时DNA与蛋白质之间经广泛交联之后,可形成牢固的复合物,这样也阻止蛋白酶对组织的消化,从而影响DNA的提取。

        可使用不同抗凝剂的抗凝管进行采集和保存;避免反复冻融,4℃短期保存3-4天,-20℃下可最多保存2年,-70℃下长期保存:全血、白细胞、血凝块、血清或血浆。

        液氮研磨或匀浆

        液氮研磨(最推荐)

        研磨充分又保证样本处于低温条件下避免DNA降解

        DNA存在于含有细胞核的白细胞中,而大量存在的红细胞会引入更多杂质和核酸酶,所以需要提前使用红细胞裂解液对红细胞进行去除。

        贴壁细胞胰酶消化处理再做收集

        悬浮细胞只要离心弃上清

        溶菌酶破壁处理

        如金**葡萄球菌加入一定量的溶菌酶在37℃条件下孵育30min就可完成破壁的处理

        酶解破壁或液氮冻融或超声裂解法

        脱蜡处理(二甲苯或矿物油类的物质进行脱蜡处理)

        CTAB(十六烷基三甲基溴化铵)是一种阳离子去污剂,可以溶解细胞膜,与核酸结合形成在高盐环境下可溶的复合物。

        1.Tris-Hcl (PH8.0) 提供一个缓冲环境,防止核酸被破坏

        2.EDTA螯合Mg2+或Mn2+离子,抑制DNase活性

        3.Nacl提供一个高盐环境,使DNA充分溶解于液相中

        4.CTAB裂解细胞,与核酸结合形成在高盐环境下可溶的复合物

        SDS法(十二烷基硫酸钠)是一种阴离子去垢剂,高温(55-60℃)裂解细胞,蛋白变性,染色体离析,在高盐环境下或降低温度后蛋白、多糖等结合形成的复合物沉淀,释放核酸。

        在氢氧化钠(PH12-12.6碱性环境)和去污剂SDS的作用下细胞破裂,细菌蛋白质和染色体DNA变性,双链DNA氢键断裂,DNA变性。加入酸性高盐缓冲液后PH恢复中性,共价闭合环状质粒DNA复性速度快于线性的染色体DNA。细菌蛋白质、破裂的细胞壁和变性的染色体DNA会相互缠绕成大型复合物被SDS包盖。之后复合物沉淀下来,质粒DNA留在上清中。

        含有Triton X-100和溶菌酶的缓冲液中加热至100℃使细菌裂解。通过加热破坏细菌外壁的同时有助于解开DNA链的碱基配对,并使蛋白质和染色体DNA变性。温度下降后,闭环DNA形成超螺旋分子,离心时留在上清中。

        酚/氯仿抽提去除蛋白质,之后使用乙醇或异丙醇沉淀DNA

        通过离心柱上的吸附膜,特异性吸附DNA

        通过磁珠表面修饰(硅基质)从而特异性吸附核酸

        检测原理:核酸、核苷酸及其衍生物都具有共轭双键系统,能吸收紫外光,最大吸收波长是260nm。

        优点:操作简便、迅速

        缺点:无法区分DNA、RNA、降解核酸、游离核苷酸及其他杂质,易得到浓度虚高值

        常见仪器:Nanodrop、Onedrop

        检测原理:采用荧光染料与特异的靶分子结合后发出荧光,仪器接收荧光值转化为浓度数据。

        优点:灵敏度较高,操作简便

        缺点:成本高,价格较贵;无法直接区分降解核酸

        OD260:核酸的吸光度

        OD280:蛋白质的吸光度

        OD260/OD280 =1.7-1.9 说明纯度很好

        OD260/OD280 <1.7 表明可能有蛋白质残留

        OD260/OD280 >1.9 表明DNA可能存在部分降解,建议进行完整度检测或存在RNA残留

        判断有无RNA、蛋白残留。1%-2%琼脂糖,上样1-3ul

        判断DNA有无降解。1%-2%琼脂糖,上样1-3ul

        通过胶图中DNA条带情况来判断

        完整的基因组DNA条带单一且明亮,无任何拖尾或弥散。

        出现不同程度的降解,胶图中可看到不同程度的拖尾或弥散。降解越严重弥散越亮,片段大小会越小。

        保存形式:建议分装保存,避免DNA反复冻融,影响DNA的完整性。

        保存液:

        短期保存:对下游实验中离子浓度要求比较高的——PH为弱碱性的无菌水。

        对离子浓度要求不高的——TE缓冲液(Tris、EDTA)。

        长期保存:乙醇。

        保存温度:-20℃/-80℃下可长期保存,4℃下保存时间最好不超过14天。

        1.尽可能选择新鲜的样本,减少内源酶的作用

        2.样本起始投入量不要超过所用方法的起始量标准

        3.样本保存时尽可能的避免反复冻融

        4.选择合适的处理方式并进行充分的样本前处理

        5.前处理结束后在样本解冻前添加裂解液

        6.需对样本进行充分裂解

        7.正确添加所需试剂种类及使用量,样本量增加时裂解液也需成倍增加

        8.对得到的DNA产物进行分装保存,避免反复冻融且保存时间不易太久

        1.事先了解好提取样本中DNA含量水平

        2.样本中发生DNA的降解,产量也会有所下降

        3.选择合适的前处理及裂解方式(如延长裂解和沉淀DNA的时间等),并尽可能的将样本中的DNA完全释放出来

        4.使用柱式试剂盒对DNA产物洗脱的时候,要尽可能的覆盖整个吸附膜;进行二次洗脱也可增加产量

        5.使用沉淀法提取DNA时,可以在沉淀之前加入1/10体积的醋酸钠(PH5.2)有助于DNA沉淀

        1.样本投入量不要太多,投入太多杂质也多以及后续裂解也不完全

        2.样本应进行充分裂解,特别是对于一些比较复杂、含有较多杂质(多糖、多酚等)的样本需进行特殊处理

        3.RNA残留:使用RNase对RNA进行处理,处理时间不宜太短(5min左右)

        4.蛋白残留:使用蛋白变性剂或蛋白酶K

        沉淀法分层吸取上清(DNA)时注意不要吸到下层沉淀蛋白

        1.抽提液中加入防止酚类氧化的试剂:β-巯基乙醇,抗坏血酸,半胱氨酸,二硫苏糖醇等

        2.加入易与酚类结合的试剂:如PVP(聚乙烯吡咯烷酮),与酚类有较强的亲和力,可防止酚类与DNA的结合

        1.高盐法:用高浓度的Na+、K+改变多糖的溶解特性,使其脱离水相进入有机相,然后用酚仿抽提去除

        2.低浓度乙醇和醋酸钾溶液可以共同沉淀多糖

        3.PVP/PVPP类物质对多糖的去除也有一定作用

        1.质粒拷贝数

        低拷贝质粒:pBR322、pACYC及其衍生载体、pSC101及其衍生载体、SuperCos、pWE15等

        高拷贝质粒:pTZ、pUC、pBS、pGM-T等

        低拷贝质粒适当增加样本投入量

        2.菌种问题:保存时间、抗性筛选

        如保存时间过久,提取质粒之前,这个质粒已经丢失,这种情况可选择活化,涂布平板培养后,重新挑选新的菌落来进行液体培养

        3.选择合适的前处理及裂解方式,并尽可能的将样本中的DNA完全释放出来

        4.使用柱式试剂盒对DNA产物洗脱的时候,要尽可能的覆盖整个吸附膜;进行二次洗脱也可增加产量

        1.菌种收集时间

        对于老旧菌种所含有的开环质粒的量明显高于属于对数生长期的菌种的。根据使用菌种生长情况找到对数生长期。一般来说对数生长期是生长速率常数最大,细胞分裂所用的代时最短的时候就是对数生长期。

        2.胞内酶含量很高的宿主菌

        先去除胞内酶,再提取质粒

        3.变性裂解的时间不宜过长,也会对质粒完整性造成影响

        4.碱裂解法加入中和液后操作应该轻柔(裂解时间不宜超过5min)

        杂质有3种

        1.RNA残留

        使用RNase对RNA进行消化处理

        2.基因组DNA残留

        温和操作

        在裂解或中和过程中,操作过于剧烈而导致基因组DNA的断裂

        3.蛋白残留

        使用蛋白变性剂或蛋白酶K进行消化

        碱裂解法将中和后的体系置于4℃一段时间,使蛋白质残留沉淀下来更少

        中和均匀彻底,将蛋白与试剂充分融合

       包涵体染色的方法有哪些?原理是什么

       包涵体染色的方法有哪些?原理是什么

       包涵体染色的方法有哪些?原理是什么

       蛋白包涵体-溶解原理及方法2009年03月15日;维持包涵体内蛋白质结构的作用力是分子内的作用力,;1.遵循标准;包涵体蛋白质的溶解同样是一个工艺的关键的步骤;(1)快速溶解的动力学;;(2)与蛋白质的结合是可逆的;;(3)对细胞碎片的分离方法没有干扰作用;;(4)对温度没有依赖作用;;(5)抑制蛋白质酶的降解作用;;(6)与蛋白质的氨基没有化学修饰作用;;

       维持包涵体内蛋白质结构的作用力是分子内的作用力,这种作用力也维持天然蛋白质的稳定性的结构。先前有报道这种作用力是共价键结合的,但是,现在趋向于一致,就是维持包涵体内部的蛋白质的紧密的结构的是非共价键的作用力。二硫键,无论是正确的还是错误的二硫键,在维持内部蛋白质的紧密的结构中都没有发挥直接的作用。最经常的获得活性蛋白质的第一步是溶解这些包涵体蛋白质,溶解液是使这些包涵体蛋白质完全变性的成分,当蛋白质被溶解以后,则进入到蛋白质的体外折叠的过程。

       1. 遵循标准

       包涵体蛋白质的溶解同样是一个工艺的关键的步骤。溶剂的选择会影响后续的操作、最终的各种蛋白质的收率以及最终的成本,必须遵循以下的标准:

       (1) 快速溶解的动力学;

       (2) 与蛋白质的结合是可逆的;

       (3) 对细胞碎片的分离方法没有干扰作用;

       (4) 对温度没有依赖作用;

       (5) 抑制蛋白质酶的降解作用;

       (6) 与蛋白质的氨基没有化学修饰作用;

       (7) 在可能的情况下,选择最低的溶解浓度和廉价的溶剂,并适于以后的复性方法。

       2. 溶解包涵体的试剂

       最经常使用溶解包涵体的试剂包括离液剂或者去垢剂。

       最经常使用的溶解和制备蛋白质的离子型的离液剂最早于1969年Hatefi等人发展的离子型的去垢剂如SDS是另外一种溶解包涵体蛋白质和膜蛋白质的试剂,但是一般不用来大规模的生产,而是用来定性。除了强酸、强碱和利用有机溶剂来提取疏水性很强的蛋白质以外,其他的变性方法如非可逆的共价修饰在工业的大规模生产中很少用到。一旦蛋白质被溶解,蛋白质中的巯基很容易快速地氧化并形成共价的聚集体或者分子内错配的二硫键,然后这些蛋白质就不能再进行折叠。为了防止氧化,可以使这些基团或者利用缓冲液中含有低分子量的疏基试剂保持在还原的状态或形成磺酸盐或者形成混合的二硫键。

       (1)去垢剂

       去垢剂是一种最经济的溶解包涵体蛋白质的方法,一个最大的优点是溶解的蛋白质有可能保持全部的生物活性,说明在此条件下保持了蛋白质的四级结构。最重要的是稀释以后蛋白质的聚集比其它溶剂生成的很

       少。阳离子型、阴离子型的和非离子型的去垢剂都可以使用,使用时的浓度一般高于去垢剂的临界胶束浓度(CMC ),通常是0.5-5%。

       SDS仅仅在大量生产牛生长激素、干扰素和白介素-2中用到。SDS由于具有较低的临界胶束浓度(CMC)而使得结合到蛋白质分子上的SDS比较难于除去。由于N-十二烷肌氨酸它的CMC比SDS高0.4%,也被用来溶解包涵体蛋白质并可用稀释的方法使蛋白质复性,残余的去垢剂可以使用阴离子交换色谱或者超滤的方法除去。这种去垢剂是一种比较温和的去垢剂,可以选择性地溶解一些包涵体,但是不能溶解完全的变性的蛋白质的聚集体和大肠杆菌的内膜的蛋白质分子。使用去垢剂一个主要的缺点是对以后的纯化和复性的步骤的干扰,去垢剂结合到蛋白质上的强度大离子交换色谱复性蛋白质小不同,比较难于除去,并干扰离子交换和疏水相互作用色谱的过程,在变性的浓度时超滤膜会吸附这些变性剂。所以复性后需要尽量洗涤这些去垢剂,也可以使用环状糊精链状糊精或者环状淀粉从复性缓冲液中提取去垢剂。

       一个不容忽视的问题是去垢剂可以溶解全部的膜蛋白质中的蛋白质酶,这些蛋白质酶的活性在去垢剂的存在的情况下被活化,可能造成溶解和复性过程的收率的降低。蛋白质复性的收率可以通过以下的方法来提高: a) 先期使用可以溶解膜蛋白质但是不溶解包涵体蛋白质的溶剂尽量洗涤包涵体蛋白质;

       b) 包涵体的含有的菌体碎片被完全除去;

       c) 溶解包涵体的液体中含有蛋白质酶的抑制剂,如EDTA,苯甲基磺酰氟(PMSF )等 。

       (2)离液剂

       其它的离液剂也被用来溶解包涵体蛋白质,最主要的溶解包涵体蛋白质的离液剂是盐酸胍和尿素,这是最经常使用的溶解试剂,一般情况下选择6-8mo1/L的浓度,蛋白质浓度在1-10mg/mL。

       在溶解色氨酸合成酶A的过程,发现阳离子的溶解能力顺序是Gdm+ > Li+ > K+ > Na+,阴离子的顺序是SCN- > I- > Br- >Cr-。一些离液剂由于它们的溶液比盐酸胍和尿素有更高的密度和黏度而不适合用于溶解包涵体,因为利用离心和色谱分离起来比较困难。

       为了溶解包涵体蛋白质需要的尿素或者盐酸胍的浓度根据蛋白质的不同而不同。如果蛋白质天然形态需要溶解的变性剂的浓度不能获得,则在溶解包涵体时需要首先确定离液剂的浓度。

       盐酸胍由于比较贵,所以一般用来溶解一些附加值比较高的药物蛋白质分子,选择盐酸胍作为溶解试剂,是因为盐酸胍是一种比脲更为强烈的变性剂,甚至可以溶解脲所不能溶解的包涵体;尿素,由于可能被自发的形成的氰酸盐或者已有的氰酸盐的污染,特别是在碱性环境中,从而造成蛋白质的自由的氨基被不可逆的修饰。消除此种影响的方法是用阴离子的缓冲系统如Tris-HCl溶解脲或者脲在使用之前利用阴离子交换色谱纯化,并且配制的溶解和复性的缓冲液在当天使用。脲溶液中影响蛋白质变性的因素与盐酸胍的不同。溶在脲中的蛋白质受到pH和离子强度的影响,从而影响电荷的蛋白质残基之间的电荷作用,但是由于盐酸胍含有高浓度的离子强度,所以这两个因素的影响很少。

       (3)混合溶剂

       一般情况下去垢剂并不联合使用,Lilly等人发现去垢剂和尿素的混合液有效的摩尔浓度较低。尿素和去垢

       剂型的盐混合可以使蛋白质变性,但是尿素和非去垢剂的盐如氯化钠反而降低包涵体蛋白质的溶解性,所以要避免使用。

       去垢剂结合其他的试剂或者溶解增强剂也被使用,发现尿素和乙酸,尿素和二甲亚枫,尿素和高pH等是比较有效的溶解包涵体蛋白质的方法。

       高压(1-2kbar)、超声也可以溶解包涵体蛋白质,此时使用的溶解试剂浓度可以比较低,便于后续的复性步骤。

       3. 极端pH

       酸碱度也是比较廉价的有效的溶解包涵体的方法。最经常使用酸的是有机酸,浓度在5-80%之间。Gavif和Better使用低的(pH≤2.6)和高温(85℃ )溶解抗真菌的重组蛋白质的肤段,低温和高PH需要溶解时间要长。Reddy和合作者也使用20%乙酸溶解一种麦芽糖结合的蛋白质。但是,同样的一些不可逆的修饰作用或者酸降解会在极端pH下发生,所以此种方法并不是经常使用的溶解包涵体的方法。

       高pH(≥12)也被用来溶解生长激素和原胰岛素。在高pH下一些蛋白质同样可能发生非可逆的变性,原因在于半胱氨酸在碱性条件下的脱硫过程。所以这种方法尽管比较简单、廉价,同样仅仅用于一些特定的蛋白质,特别对于药用蛋白质一般不采用这种方法。

       再登陆/content/20050415/10541.htm

       摘要 基因重组蛋白在大肠杆菌中表达时,由于表达量高,往往形成无生物活性的包涵体。包涵体必须经过变性和复性的过程才能获得有活性的重组蛋白。如何提高基因重组蛋白质的复性率,是生物工程技术的一个研究热点。对近年来的重组蛋白质的复性方法做一评述,为研究蛋白质折叠以及复性技术的进一步应用提供依据。

       关键词 重组蛋白 包涵体 复性 二硫键

       到目前为止,人们表达的重组蛋白质已有4000多种,其中用E.coli表达的蛋白质要占90%以上,尽管基因重组技术为大规模生产目标蛋白质提供了崭新的途径,然而人们在分离纯化时却遇到了意想不到的困难,即这些蛋白质在E.coli中绝大多数是以包涵体形式存在,重组蛋白不仅不能分泌到细胞外,反而在细胞内聚集成没有生物活性的直径约0.1~3.0μm的固体颗粒[1]。自从应用大肠杆菌体系表达基因工程产品以来,人们就一直期望得到高活性、高产量的重组蛋白。不可溶、无生物活性的包涵体必须经过变性、复性才能获得天然结构以及生物活性,因此应该选择一个合适的复性过程来实现蛋白质的正确折叠,获得生物活性,近年来的研究可以使复杂的疏水蛋白、多结构域蛋白、寡聚蛋白、含二硫键蛋白在体外成功复性。

       包涵体形成的原因

       重组蛋白在宿主系统中高水平表达时,无论是原核表达体系或真核表达体系甚至高等真核表达体系,都会形成包涵体[2]。主要因为在重组蛋白的表达过程中,缺乏某些蛋白质折叠过程中需要的酶和辅助因子,或环境不适,无法形成正确的次级键等原因形成的[3]。

       1、 表达量过高,研究发现在低表达时很少形成包涵体,表达量越高越容易形成包涵体。原因可能是合成速度太快,以至于没有足够的时间进行折叠,二硫键不能正确配对,过多的蛋白间的非特异性结合,蛋白质无法达到足够的溶解度等。

       2、 重组蛋白的氨基酸组成,一般说来含硫氨基酸越多越容易形成包涵体。

       3、 重组蛋白所处的环境:发酵温度高或胞内pH接近蛋白的等电点时容易形成包涵体。

       4、 重组蛋白是大肠杆菌的异源蛋白,由于缺少真核生物中翻译后修饰所需酶类,致使中间体大量积累,容易形成包涵体沉淀。

       5、 有报道认为,丰富的培养基有利于活性蛋白质的表达,当培养条件不佳时,容易形成包涵体。

       减少包涵体形成的策略

       1、 降低重组菌的生长温度,降低培养温度是减少包涵体形成的最常用的方法,较低的生长温度降低了无活性聚集体形成的速率和疏水相互作用,从而可减少包涵体的形成[4]。

       2、 添加可促进重组蛋白质可溶性表达的生长添加剂,培养E.coli时添加高浓度的多醇类、蔗糖或非代谢糖可以阻止分泌到周质的蛋白质聚集反应,在最适浓度范围内添加这些添加剂不会影响细胞的生长、蛋白质的合成或运输,其它促重组蛋白质可溶性表达的生长添加剂还有乙醇(诱导热休克蛋白的表达)、低分子量的巯基或二硫化合物(影响细胞周质的还原态,从而影响二硫键的形成)和NaCl[5]。

       3、 供给丰富的培养基,创造最佳培养条件,如供氧、pH等。

       包涵体的分离及溶解

       对于生物制药工业来说,包涵体的形成也是有利的,不仅可获得高表达、高纯度的重组蛋白质,还可避免细胞水解酶对重组蛋白质的破坏。由于包涵体是蛋白质聚集而成的致密颗粒,分离的第一步是对培养收集的细胞进行破碎,比较有效的方法是高压匀浆结合溶菌酶处理,然后5000~20000g离心,可使大部分包涵体沉淀,与可溶性蛋白分离,接着,包涵体沉淀需用去污剂(Triton X-100或脱氧胆酸钠)和低浓度变性剂(2mol/L尿素或盐酸胍等)洗涤除去脂类和膜蛋白,这一步很重要,否则会导致包涵体溶解和复性的过程中重组蛋白质的降解[6、7、8]。

       包涵体的溶解必须用很强的变性剂,如8mol/L尿素、6~8mol/L盐酸胍,通过离子间的相互作用破坏包涵体蛋白间的氢键而增溶蛋白。其中尿素的增溶效果稍差,异氰盐酸胍最强;去污剂,如SDS[7],可以破坏蛋白内的疏水键,可以增溶几乎所有的蛋白,但由于无法彻底去除而不允许用在制药行业中;酸,如70%甲酸[9],可以破坏蛋白的次级键从而增溶蛋白,这种方法只适合少数蛋白质。对于含有半胱氨酸的蛋白,在增溶时应加入还原剂(如DTT、GSH、β-ME)打开蛋白质中所有二硫键,对于目标蛋白没有二硫键的有时也应使用还原剂,为含二硫键的杂蛋白会影响包涵体的溶解,同时还应加入金属螯合剂,如EDTA或EGTA,用来螯合Cu2+、Fe3+等金属离子与还原状态的巯基发生氧化反应[10]。

       蛋白质的折叠机理

       包涵体蛋白在变性剂作用下,为可溶性伸展态,在变性剂去除或浓度降低时,就会自发的从变性的热不稳

       状态向热力学稳定状态转变,形成具有生物活性的天然结构[11]。然而在去除变性剂的同时,重组蛋白质在体外折叠,分子间存在大量错误折叠和聚合,复性效率往往很低,包涵体蛋白折叠复性的效率实际上取决于正确折叠过程与聚集过程之间的竞争[1]。对于蛋白质的折叠机制,目前有多种不同的假设,但很多学者认为有一个“熔球态”的中间状态,在“熔球态”中,蛋白质的二级结构已经基本形成,其空间结构也初具规模,再做一些局部调整就可形成正确的立体结构,总之,蛋白质的具体步骤可用下式描述[12、13、14]:

       伸展态→中间体→后期中间体→天然态体→聚集体

       在折叠反应中,从伸展态到中间体的速度是非常快的,只需要几毫秒,但从中间体转变为天然态的过程比较缓慢,是一个限速过程。聚集过程与复性过程相互竞争,故而应尽量避免聚集体的产生。一般认为,蛋白质在复性过程中涉及两种疏水作用,一是分子内的疏水相互作用,可促进蛋白质正确折叠;一是部分折叠的肽链分子间的疏水相互作用,在复性过程中,部分折叠的中间体的疏水簇外露,分子间的疏水相互作用会导致蛋白质聚集。蛋白质的立体结构虽然由其氨基酸的顺序决定,然而伸展肽链折叠为天然活性结构的过程还受到周围环境的影响,如温度、pH值、离子强度、复性时间等因素的影响。

       提高重组蛋白质折叠复性的方法

       一个有效的、理想的折叠复性方法应具备以下几个特点:活性蛋白质的回收率高;正确复性的产物易于与错误折叠蛋白质分离;折叠复性后应得到浓度较高的蛋白质产品;折叠复性方法易于放大;复性过程耗时较少[15]。

       1、 透析、稀释和超滤复性法:这三种方法是最传统也是应用最普遍的蛋白质折叠复性方法,复性活性回收率低,而且难于与杂蛋白分离。透析法耗时长,易形成无活性蛋白质聚集体;超滤法在膜上聚集变性,易造成膜污染;稀释法处理量太大,不利于工业放大[16]。

       2、 高蛋白浓度下的复性方法:一个成功的复性过程在于能够在高蛋白浓度下仍能得到较高的复性率。一个方法是把变性蛋白缓慢连续或不连续地加入到复性液中[17]。在两次蛋白加入之间,应有足够的时间间隔使蛋白质折叠通过了易聚集的中间体阶段。这是由于完全折叠的蛋白通常不会与正在折叠的蛋白一起聚集。第二种方法是用温度跳跃策略[4]。变性蛋白在低温下复性折叠以减少聚集,直到易聚集的中间体大都转化为不易聚集的后期中间体后,温度快速升高来促进后期中间体快速折叠为蛋白的天然构象。第三种方法是复性在中等的变性剂浓度下进行[18],变性剂浓度应高到足以有效防止聚集,同时又必须低到能够引发正确复性。

       3、 添加促进剂的复性方法:包涵体蛋白质折叠复性促进剂的促进作用可以分为:稳定正确折叠蛋白质的天然结构、改变错误折叠蛋白质的稳定性、增加折叠复性中间体的溶解性、增加非折叠蛋白质的溶解性。通常使用的添加剂有:a、共溶剂:如PEG6000~20000,通过与中间体特异的形成非聚集的复合物,可以阻止蛋白质分子间的相互碰撞机会,减少蛋白质的聚集;b、去污剂及表面活性剂:如Trition X-100、CHAPs、磷脂、磺基甜菜碱等对蛋白质复性有促进作用,但它们能与蛋白质结合,很难去除;c、氧化-还原剂:对于含有二硫键的蛋白,复性过程中应加入氧化还原体系,如GSH/GSSG、DTT/GSSG、DTE/GSSG等,氧化还原系统通过促进不正确形成的二硫键快速交换反应,提高了正确配对的二硫键的产率[19];d、小分子的添加剂:如盐酸胍或尿素、烷基脲、碳酸酰胺类等,都可阻止蛋白聚集,它们的作用可能为:稳定蛋白的活性状态、降低非正确折叠的稳定性、增加折叠中间体的稳定性、增加解折叠状态的稳定性。e、0.4~0.6M L-Arg:L-Arg能使得不正确折叠的蛋白质结构以及不正确连接的二硫键变得不稳定,使折叠向正确方向进行,可大幅度地提高包涵体蛋白质的折叠效率。f、添加分子伴侣和折叠酶:分子伴侣是指能够结合和稳定

       今天的讨论已经涵盖了“溶菌酶配制triton”的各个方面。我希望您能够从中获得所需的信息,并利用这些知识在将来的学习和生活中取得更好的成果。如果您有任何问题或需要进一步的讨论,请随时告诉我。